This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Multiplication of both sides of 'less than or equal to' by a nonnegative number. (Contributed by NM, 21-Feb-2005)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | lemul1a | ⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ ( 𝐶 ∈ ℝ ∧ 0 ≤ 𝐶 ) ) ∧ 𝐴 ≤ 𝐵 ) → ( 𝐴 · 𝐶 ) ≤ ( 𝐵 · 𝐶 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 0re | ⊢ 0 ∈ ℝ | |
| 2 | leloe | ⊢ ( ( 0 ∈ ℝ ∧ 𝐶 ∈ ℝ ) → ( 0 ≤ 𝐶 ↔ ( 0 < 𝐶 ∨ 0 = 𝐶 ) ) ) | |
| 3 | 1 2 | mpan | ⊢ ( 𝐶 ∈ ℝ → ( 0 ≤ 𝐶 ↔ ( 0 < 𝐶 ∨ 0 = 𝐶 ) ) ) |
| 4 | 3 | pm5.32i | ⊢ ( ( 𝐶 ∈ ℝ ∧ 0 ≤ 𝐶 ) ↔ ( 𝐶 ∈ ℝ ∧ ( 0 < 𝐶 ∨ 0 = 𝐶 ) ) ) |
| 5 | lemul1 | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ ( 𝐶 ∈ ℝ ∧ 0 < 𝐶 ) ) → ( 𝐴 ≤ 𝐵 ↔ ( 𝐴 · 𝐶 ) ≤ ( 𝐵 · 𝐶 ) ) ) | |
| 6 | 5 | biimpd | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ ( 𝐶 ∈ ℝ ∧ 0 < 𝐶 ) ) → ( 𝐴 ≤ 𝐵 → ( 𝐴 · 𝐶 ) ≤ ( 𝐵 · 𝐶 ) ) ) |
| 7 | 6 | 3expia | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) → ( ( 𝐶 ∈ ℝ ∧ 0 < 𝐶 ) → ( 𝐴 ≤ 𝐵 → ( 𝐴 · 𝐶 ) ≤ ( 𝐵 · 𝐶 ) ) ) ) |
| 8 | 7 | com12 | ⊢ ( ( 𝐶 ∈ ℝ ∧ 0 < 𝐶 ) → ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) → ( 𝐴 ≤ 𝐵 → ( 𝐴 · 𝐶 ) ≤ ( 𝐵 · 𝐶 ) ) ) ) |
| 9 | 1 | leidi | ⊢ 0 ≤ 0 |
| 10 | recn | ⊢ ( 𝐴 ∈ ℝ → 𝐴 ∈ ℂ ) | |
| 11 | 10 | mul01d | ⊢ ( 𝐴 ∈ ℝ → ( 𝐴 · 0 ) = 0 ) |
| 12 | recn | ⊢ ( 𝐵 ∈ ℝ → 𝐵 ∈ ℂ ) | |
| 13 | 12 | mul01d | ⊢ ( 𝐵 ∈ ℝ → ( 𝐵 · 0 ) = 0 ) |
| 14 | 11 13 | breqan12d | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) → ( ( 𝐴 · 0 ) ≤ ( 𝐵 · 0 ) ↔ 0 ≤ 0 ) ) |
| 15 | 9 14 | mpbiri | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) → ( 𝐴 · 0 ) ≤ ( 𝐵 · 0 ) ) |
| 16 | oveq2 | ⊢ ( 0 = 𝐶 → ( 𝐴 · 0 ) = ( 𝐴 · 𝐶 ) ) | |
| 17 | oveq2 | ⊢ ( 0 = 𝐶 → ( 𝐵 · 0 ) = ( 𝐵 · 𝐶 ) ) | |
| 18 | 16 17 | breq12d | ⊢ ( 0 = 𝐶 → ( ( 𝐴 · 0 ) ≤ ( 𝐵 · 0 ) ↔ ( 𝐴 · 𝐶 ) ≤ ( 𝐵 · 𝐶 ) ) ) |
| 19 | 15 18 | imbitrid | ⊢ ( 0 = 𝐶 → ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) → ( 𝐴 · 𝐶 ) ≤ ( 𝐵 · 𝐶 ) ) ) |
| 20 | 19 | a1dd | ⊢ ( 0 = 𝐶 → ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) → ( 𝐴 ≤ 𝐵 → ( 𝐴 · 𝐶 ) ≤ ( 𝐵 · 𝐶 ) ) ) ) |
| 21 | 20 | adantl | ⊢ ( ( 𝐶 ∈ ℝ ∧ 0 = 𝐶 ) → ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) → ( 𝐴 ≤ 𝐵 → ( 𝐴 · 𝐶 ) ≤ ( 𝐵 · 𝐶 ) ) ) ) |
| 22 | 8 21 | jaodan | ⊢ ( ( 𝐶 ∈ ℝ ∧ ( 0 < 𝐶 ∨ 0 = 𝐶 ) ) → ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) → ( 𝐴 ≤ 𝐵 → ( 𝐴 · 𝐶 ) ≤ ( 𝐵 · 𝐶 ) ) ) ) |
| 23 | 4 22 | sylbi | ⊢ ( ( 𝐶 ∈ ℝ ∧ 0 ≤ 𝐶 ) → ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) → ( 𝐴 ≤ 𝐵 → ( 𝐴 · 𝐶 ) ≤ ( 𝐵 · 𝐶 ) ) ) ) |
| 24 | 23 | com12 | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) → ( ( 𝐶 ∈ ℝ ∧ 0 ≤ 𝐶 ) → ( 𝐴 ≤ 𝐵 → ( 𝐴 · 𝐶 ) ≤ ( 𝐵 · 𝐶 ) ) ) ) |
| 25 | 24 | 3impia | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ ( 𝐶 ∈ ℝ ∧ 0 ≤ 𝐶 ) ) → ( 𝐴 ≤ 𝐵 → ( 𝐴 · 𝐶 ) ≤ ( 𝐵 · 𝐶 ) ) ) |
| 26 | 25 | imp | ⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ ( 𝐶 ∈ ℝ ∧ 0 ≤ 𝐶 ) ) ∧ 𝐴 ≤ 𝐵 ) → ( 𝐴 · 𝐶 ) ≤ ( 𝐵 · 𝐶 ) ) |