This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The limit of a geometric series of reciprocals. (Contributed by Paul Chapman, 28-Dec-2007) (Revised by Mario Carneiro, 26-Apr-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | georeclim.1 | ⊢ ( 𝜑 → 𝐴 ∈ ℂ ) | |
| georeclim.2 | ⊢ ( 𝜑 → 1 < ( abs ‘ 𝐴 ) ) | ||
| georeclim.3 | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ0 ) → ( 𝐹 ‘ 𝑘 ) = ( ( 1 / 𝐴 ) ↑ 𝑘 ) ) | ||
| Assertion | georeclim | ⊢ ( 𝜑 → seq 0 ( + , 𝐹 ) ⇝ ( 𝐴 / ( 𝐴 − 1 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | georeclim.1 | ⊢ ( 𝜑 → 𝐴 ∈ ℂ ) | |
| 2 | georeclim.2 | ⊢ ( 𝜑 → 1 < ( abs ‘ 𝐴 ) ) | |
| 3 | georeclim.3 | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ0 ) → ( 𝐹 ‘ 𝑘 ) = ( ( 1 / 𝐴 ) ↑ 𝑘 ) ) | |
| 4 | 0le1 | ⊢ 0 ≤ 1 | |
| 5 | 0re | ⊢ 0 ∈ ℝ | |
| 6 | 1re | ⊢ 1 ∈ ℝ | |
| 7 | 5 6 | lenlti | ⊢ ( 0 ≤ 1 ↔ ¬ 1 < 0 ) |
| 8 | 4 7 | mpbi | ⊢ ¬ 1 < 0 |
| 9 | fveq2 | ⊢ ( 𝐴 = 0 → ( abs ‘ 𝐴 ) = ( abs ‘ 0 ) ) | |
| 10 | abs0 | ⊢ ( abs ‘ 0 ) = 0 | |
| 11 | 9 10 | eqtrdi | ⊢ ( 𝐴 = 0 → ( abs ‘ 𝐴 ) = 0 ) |
| 12 | 11 | breq2d | ⊢ ( 𝐴 = 0 → ( 1 < ( abs ‘ 𝐴 ) ↔ 1 < 0 ) ) |
| 13 | 8 12 | mtbiri | ⊢ ( 𝐴 = 0 → ¬ 1 < ( abs ‘ 𝐴 ) ) |
| 14 | 13 | necon2ai | ⊢ ( 1 < ( abs ‘ 𝐴 ) → 𝐴 ≠ 0 ) |
| 15 | 2 14 | syl | ⊢ ( 𝜑 → 𝐴 ≠ 0 ) |
| 16 | 1 15 | reccld | ⊢ ( 𝜑 → ( 1 / 𝐴 ) ∈ ℂ ) |
| 17 | 1cnd | ⊢ ( 𝜑 → 1 ∈ ℂ ) | |
| 18 | 17 1 15 | absdivd | ⊢ ( 𝜑 → ( abs ‘ ( 1 / 𝐴 ) ) = ( ( abs ‘ 1 ) / ( abs ‘ 𝐴 ) ) ) |
| 19 | abs1 | ⊢ ( abs ‘ 1 ) = 1 | |
| 20 | 19 | oveq1i | ⊢ ( ( abs ‘ 1 ) / ( abs ‘ 𝐴 ) ) = ( 1 / ( abs ‘ 𝐴 ) ) |
| 21 | 18 20 | eqtrdi | ⊢ ( 𝜑 → ( abs ‘ ( 1 / 𝐴 ) ) = ( 1 / ( abs ‘ 𝐴 ) ) ) |
| 22 | 1 15 | absrpcld | ⊢ ( 𝜑 → ( abs ‘ 𝐴 ) ∈ ℝ+ ) |
| 23 | 22 | recgt1d | ⊢ ( 𝜑 → ( 1 < ( abs ‘ 𝐴 ) ↔ ( 1 / ( abs ‘ 𝐴 ) ) < 1 ) ) |
| 24 | 2 23 | mpbid | ⊢ ( 𝜑 → ( 1 / ( abs ‘ 𝐴 ) ) < 1 ) |
| 25 | 21 24 | eqbrtrd | ⊢ ( 𝜑 → ( abs ‘ ( 1 / 𝐴 ) ) < 1 ) |
| 26 | 16 25 3 | geolim | ⊢ ( 𝜑 → seq 0 ( + , 𝐹 ) ⇝ ( 1 / ( 1 − ( 1 / 𝐴 ) ) ) ) |
| 27 | 1 17 1 15 | divsubdird | ⊢ ( 𝜑 → ( ( 𝐴 − 1 ) / 𝐴 ) = ( ( 𝐴 / 𝐴 ) − ( 1 / 𝐴 ) ) ) |
| 28 | 1 15 | dividd | ⊢ ( 𝜑 → ( 𝐴 / 𝐴 ) = 1 ) |
| 29 | 28 | oveq1d | ⊢ ( 𝜑 → ( ( 𝐴 / 𝐴 ) − ( 1 / 𝐴 ) ) = ( 1 − ( 1 / 𝐴 ) ) ) |
| 30 | 27 29 | eqtrd | ⊢ ( 𝜑 → ( ( 𝐴 − 1 ) / 𝐴 ) = ( 1 − ( 1 / 𝐴 ) ) ) |
| 31 | 30 | oveq2d | ⊢ ( 𝜑 → ( 1 / ( ( 𝐴 − 1 ) / 𝐴 ) ) = ( 1 / ( 1 − ( 1 / 𝐴 ) ) ) ) |
| 32 | ax-1cn | ⊢ 1 ∈ ℂ | |
| 33 | subcl | ⊢ ( ( 𝐴 ∈ ℂ ∧ 1 ∈ ℂ ) → ( 𝐴 − 1 ) ∈ ℂ ) | |
| 34 | 1 32 33 | sylancl | ⊢ ( 𝜑 → ( 𝐴 − 1 ) ∈ ℂ ) |
| 35 | 6 | ltnri | ⊢ ¬ 1 < 1 |
| 36 | fveq2 | ⊢ ( 𝐴 = 1 → ( abs ‘ 𝐴 ) = ( abs ‘ 1 ) ) | |
| 37 | 36 19 | eqtrdi | ⊢ ( 𝐴 = 1 → ( abs ‘ 𝐴 ) = 1 ) |
| 38 | 37 | breq2d | ⊢ ( 𝐴 = 1 → ( 1 < ( abs ‘ 𝐴 ) ↔ 1 < 1 ) ) |
| 39 | 35 38 | mtbiri | ⊢ ( 𝐴 = 1 → ¬ 1 < ( abs ‘ 𝐴 ) ) |
| 40 | 39 | necon2ai | ⊢ ( 1 < ( abs ‘ 𝐴 ) → 𝐴 ≠ 1 ) |
| 41 | 2 40 | syl | ⊢ ( 𝜑 → 𝐴 ≠ 1 ) |
| 42 | subeq0 | ⊢ ( ( 𝐴 ∈ ℂ ∧ 1 ∈ ℂ ) → ( ( 𝐴 − 1 ) = 0 ↔ 𝐴 = 1 ) ) | |
| 43 | 1 32 42 | sylancl | ⊢ ( 𝜑 → ( ( 𝐴 − 1 ) = 0 ↔ 𝐴 = 1 ) ) |
| 44 | 43 | necon3bid | ⊢ ( 𝜑 → ( ( 𝐴 − 1 ) ≠ 0 ↔ 𝐴 ≠ 1 ) ) |
| 45 | 41 44 | mpbird | ⊢ ( 𝜑 → ( 𝐴 − 1 ) ≠ 0 ) |
| 46 | 34 1 45 15 | recdivd | ⊢ ( 𝜑 → ( 1 / ( ( 𝐴 − 1 ) / 𝐴 ) ) = ( 𝐴 / ( 𝐴 − 1 ) ) ) |
| 47 | 31 46 | eqtr3d | ⊢ ( 𝜑 → ( 1 / ( 1 − ( 1 / 𝐴 ) ) ) = ( 𝐴 / ( 𝐴 − 1 ) ) ) |
| 48 | 26 47 | breqtrd | ⊢ ( 𝜑 → seq 0 ( + , 𝐹 ) ⇝ ( 𝐴 / ( 𝐴 − 1 ) ) ) |