This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A shifted function converges iff the original function converges. (Contributed by NM, 16-Aug-2005) (Revised by Mario Carneiro, 31-Jan-2014)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | climshft | ⊢ ( ( 𝑀 ∈ ℤ ∧ 𝐹 ∈ 𝑉 ) → ( ( 𝐹 shift 𝑀 ) ⇝ 𝐴 ↔ 𝐹 ⇝ 𝐴 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | oveq1 | ⊢ ( 𝑓 = 𝐹 → ( 𝑓 shift 𝑀 ) = ( 𝐹 shift 𝑀 ) ) | |
| 2 | 1 | breq1d | ⊢ ( 𝑓 = 𝐹 → ( ( 𝑓 shift 𝑀 ) ⇝ 𝐴 ↔ ( 𝐹 shift 𝑀 ) ⇝ 𝐴 ) ) |
| 3 | breq1 | ⊢ ( 𝑓 = 𝐹 → ( 𝑓 ⇝ 𝐴 ↔ 𝐹 ⇝ 𝐴 ) ) | |
| 4 | 2 3 | bibi12d | ⊢ ( 𝑓 = 𝐹 → ( ( ( 𝑓 shift 𝑀 ) ⇝ 𝐴 ↔ 𝑓 ⇝ 𝐴 ) ↔ ( ( 𝐹 shift 𝑀 ) ⇝ 𝐴 ↔ 𝐹 ⇝ 𝐴 ) ) ) |
| 5 | 4 | imbi2d | ⊢ ( 𝑓 = 𝐹 → ( ( 𝑀 ∈ ℤ → ( ( 𝑓 shift 𝑀 ) ⇝ 𝐴 ↔ 𝑓 ⇝ 𝐴 ) ) ↔ ( 𝑀 ∈ ℤ → ( ( 𝐹 shift 𝑀 ) ⇝ 𝐴 ↔ 𝐹 ⇝ 𝐴 ) ) ) ) |
| 6 | znegcl | ⊢ ( 𝑀 ∈ ℤ → - 𝑀 ∈ ℤ ) | |
| 7 | ovex | ⊢ ( 𝑓 shift 𝑀 ) ∈ V | |
| 8 | 7 | climshftlem | ⊢ ( - 𝑀 ∈ ℤ → ( ( 𝑓 shift 𝑀 ) ⇝ 𝐴 → ( ( 𝑓 shift 𝑀 ) shift - 𝑀 ) ⇝ 𝐴 ) ) |
| 9 | 6 8 | syl | ⊢ ( 𝑀 ∈ ℤ → ( ( 𝑓 shift 𝑀 ) ⇝ 𝐴 → ( ( 𝑓 shift 𝑀 ) shift - 𝑀 ) ⇝ 𝐴 ) ) |
| 10 | eqid | ⊢ ( ℤ≥ ‘ 𝑀 ) = ( ℤ≥ ‘ 𝑀 ) | |
| 11 | ovexd | ⊢ ( 𝑀 ∈ ℤ → ( ( 𝑓 shift 𝑀 ) shift - 𝑀 ) ∈ V ) | |
| 12 | vex | ⊢ 𝑓 ∈ V | |
| 13 | 12 | a1i | ⊢ ( 𝑀 ∈ ℤ → 𝑓 ∈ V ) |
| 14 | id | ⊢ ( 𝑀 ∈ ℤ → 𝑀 ∈ ℤ ) | |
| 15 | zcn | ⊢ ( 𝑀 ∈ ℤ → 𝑀 ∈ ℂ ) | |
| 16 | eluzelcn | ⊢ ( 𝑘 ∈ ( ℤ≥ ‘ 𝑀 ) → 𝑘 ∈ ℂ ) | |
| 17 | 12 | shftcan1 | ⊢ ( ( 𝑀 ∈ ℂ ∧ 𝑘 ∈ ℂ ) → ( ( ( 𝑓 shift 𝑀 ) shift - 𝑀 ) ‘ 𝑘 ) = ( 𝑓 ‘ 𝑘 ) ) |
| 18 | 15 16 17 | syl2an | ⊢ ( ( 𝑀 ∈ ℤ ∧ 𝑘 ∈ ( ℤ≥ ‘ 𝑀 ) ) → ( ( ( 𝑓 shift 𝑀 ) shift - 𝑀 ) ‘ 𝑘 ) = ( 𝑓 ‘ 𝑘 ) ) |
| 19 | 10 11 13 14 18 | climeq | ⊢ ( 𝑀 ∈ ℤ → ( ( ( 𝑓 shift 𝑀 ) shift - 𝑀 ) ⇝ 𝐴 ↔ 𝑓 ⇝ 𝐴 ) ) |
| 20 | 9 19 | sylibd | ⊢ ( 𝑀 ∈ ℤ → ( ( 𝑓 shift 𝑀 ) ⇝ 𝐴 → 𝑓 ⇝ 𝐴 ) ) |
| 21 | 12 | climshftlem | ⊢ ( 𝑀 ∈ ℤ → ( 𝑓 ⇝ 𝐴 → ( 𝑓 shift 𝑀 ) ⇝ 𝐴 ) ) |
| 22 | 20 21 | impbid | ⊢ ( 𝑀 ∈ ℤ → ( ( 𝑓 shift 𝑀 ) ⇝ 𝐴 ↔ 𝑓 ⇝ 𝐴 ) ) |
| 23 | 5 22 | vtoclg | ⊢ ( 𝐹 ∈ 𝑉 → ( 𝑀 ∈ ℤ → ( ( 𝐹 shift 𝑀 ) ⇝ 𝐴 ↔ 𝐹 ⇝ 𝐴 ) ) ) |
| 24 | 23 | impcom | ⊢ ( ( 𝑀 ∈ ℤ ∧ 𝐹 ∈ 𝑉 ) → ( ( 𝐹 shift 𝑀 ) ⇝ 𝐴 ↔ 𝐹 ⇝ 𝐴 ) ) |