This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: An integer power of a reciprocal is the reciprocal of the integer power with same exponent. (Contributed by Mario Carneiro, 28-May-2016)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | expcld.1 | ⊢ ( 𝜑 → 𝐴 ∈ ℂ ) | |
| sqrecd.1 | ⊢ ( 𝜑 → 𝐴 ≠ 0 ) | ||
| expclzd.3 | ⊢ ( 𝜑 → 𝑁 ∈ ℤ ) | ||
| Assertion | exprecd | ⊢ ( 𝜑 → ( ( 1 / 𝐴 ) ↑ 𝑁 ) = ( 1 / ( 𝐴 ↑ 𝑁 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | expcld.1 | ⊢ ( 𝜑 → 𝐴 ∈ ℂ ) | |
| 2 | sqrecd.1 | ⊢ ( 𝜑 → 𝐴 ≠ 0 ) | |
| 3 | expclzd.3 | ⊢ ( 𝜑 → 𝑁 ∈ ℤ ) | |
| 4 | exprec | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝑁 ∈ ℤ ) → ( ( 1 / 𝐴 ) ↑ 𝑁 ) = ( 1 / ( 𝐴 ↑ 𝑁 ) ) ) | |
| 5 | 1 2 3 4 | syl3anc | ⊢ ( 𝜑 → ( ( 1 / 𝐴 ) ↑ 𝑁 ) = ( 1 / ( 𝐴 ↑ 𝑁 ) ) ) |