This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Separate out the next term of the power series expansion of the exponential function. The last hypothesis allows the separated terms to be rearranged as desired. (Contributed by Paul Chapman, 23-Nov-2007) (Revised by Mario Carneiro, 29-Apr-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | efsep.1 | ⊢ 𝐹 = ( 𝑛 ∈ ℕ0 ↦ ( ( 𝐴 ↑ 𝑛 ) / ( ! ‘ 𝑛 ) ) ) | |
| efsep.2 | ⊢ 𝑁 = ( 𝑀 + 1 ) | ||
| efsep.3 | ⊢ 𝑀 ∈ ℕ0 | ||
| efsep.4 | ⊢ ( 𝜑 → 𝐴 ∈ ℂ ) | ||
| efsep.5 | ⊢ ( 𝜑 → 𝐵 ∈ ℂ ) | ||
| efsep.6 | ⊢ ( 𝜑 → ( exp ‘ 𝐴 ) = ( 𝐵 + Σ 𝑘 ∈ ( ℤ≥ ‘ 𝑀 ) ( 𝐹 ‘ 𝑘 ) ) ) | ||
| efsep.7 | ⊢ ( 𝜑 → ( 𝐵 + ( ( 𝐴 ↑ 𝑀 ) / ( ! ‘ 𝑀 ) ) ) = 𝐷 ) | ||
| Assertion | efsep | ⊢ ( 𝜑 → ( exp ‘ 𝐴 ) = ( 𝐷 + Σ 𝑘 ∈ ( ℤ≥ ‘ 𝑁 ) ( 𝐹 ‘ 𝑘 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | efsep.1 | ⊢ 𝐹 = ( 𝑛 ∈ ℕ0 ↦ ( ( 𝐴 ↑ 𝑛 ) / ( ! ‘ 𝑛 ) ) ) | |
| 2 | efsep.2 | ⊢ 𝑁 = ( 𝑀 + 1 ) | |
| 3 | efsep.3 | ⊢ 𝑀 ∈ ℕ0 | |
| 4 | efsep.4 | ⊢ ( 𝜑 → 𝐴 ∈ ℂ ) | |
| 5 | efsep.5 | ⊢ ( 𝜑 → 𝐵 ∈ ℂ ) | |
| 6 | efsep.6 | ⊢ ( 𝜑 → ( exp ‘ 𝐴 ) = ( 𝐵 + Σ 𝑘 ∈ ( ℤ≥ ‘ 𝑀 ) ( 𝐹 ‘ 𝑘 ) ) ) | |
| 7 | efsep.7 | ⊢ ( 𝜑 → ( 𝐵 + ( ( 𝐴 ↑ 𝑀 ) / ( ! ‘ 𝑀 ) ) ) = 𝐷 ) | |
| 8 | eqid | ⊢ ( ℤ≥ ‘ 𝑀 ) = ( ℤ≥ ‘ 𝑀 ) | |
| 9 | 3 | nn0zi | ⊢ 𝑀 ∈ ℤ |
| 10 | 9 | a1i | ⊢ ( 𝜑 → 𝑀 ∈ ℤ ) |
| 11 | eqidd | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( ℤ≥ ‘ 𝑀 ) ) → ( 𝐹 ‘ 𝑘 ) = ( 𝐹 ‘ 𝑘 ) ) | |
| 12 | eluznn0 | ⊢ ( ( 𝑀 ∈ ℕ0 ∧ 𝑘 ∈ ( ℤ≥ ‘ 𝑀 ) ) → 𝑘 ∈ ℕ0 ) | |
| 13 | 3 12 | mpan | ⊢ ( 𝑘 ∈ ( ℤ≥ ‘ 𝑀 ) → 𝑘 ∈ ℕ0 ) |
| 14 | 1 | eftval | ⊢ ( 𝑘 ∈ ℕ0 → ( 𝐹 ‘ 𝑘 ) = ( ( 𝐴 ↑ 𝑘 ) / ( ! ‘ 𝑘 ) ) ) |
| 15 | 14 | adantl | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ0 ) → ( 𝐹 ‘ 𝑘 ) = ( ( 𝐴 ↑ 𝑘 ) / ( ! ‘ 𝑘 ) ) ) |
| 16 | eftcl | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝑘 ∈ ℕ0 ) → ( ( 𝐴 ↑ 𝑘 ) / ( ! ‘ 𝑘 ) ) ∈ ℂ ) | |
| 17 | 4 16 | sylan | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ0 ) → ( ( 𝐴 ↑ 𝑘 ) / ( ! ‘ 𝑘 ) ) ∈ ℂ ) |
| 18 | 15 17 | eqeltrd | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ0 ) → ( 𝐹 ‘ 𝑘 ) ∈ ℂ ) |
| 19 | 13 18 | sylan2 | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( ℤ≥ ‘ 𝑀 ) ) → ( 𝐹 ‘ 𝑘 ) ∈ ℂ ) |
| 20 | 1 | eftlcvg | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝑀 ∈ ℕ0 ) → seq 𝑀 ( + , 𝐹 ) ∈ dom ⇝ ) |
| 21 | 4 3 20 | sylancl | ⊢ ( 𝜑 → seq 𝑀 ( + , 𝐹 ) ∈ dom ⇝ ) |
| 22 | 8 10 11 19 21 | isum1p | ⊢ ( 𝜑 → Σ 𝑘 ∈ ( ℤ≥ ‘ 𝑀 ) ( 𝐹 ‘ 𝑘 ) = ( ( 𝐹 ‘ 𝑀 ) + Σ 𝑘 ∈ ( ℤ≥ ‘ ( 𝑀 + 1 ) ) ( 𝐹 ‘ 𝑘 ) ) ) |
| 23 | 1 | eftval | ⊢ ( 𝑀 ∈ ℕ0 → ( 𝐹 ‘ 𝑀 ) = ( ( 𝐴 ↑ 𝑀 ) / ( ! ‘ 𝑀 ) ) ) |
| 24 | 3 23 | ax-mp | ⊢ ( 𝐹 ‘ 𝑀 ) = ( ( 𝐴 ↑ 𝑀 ) / ( ! ‘ 𝑀 ) ) |
| 25 | 2 | eqcomi | ⊢ ( 𝑀 + 1 ) = 𝑁 |
| 26 | 25 | fveq2i | ⊢ ( ℤ≥ ‘ ( 𝑀 + 1 ) ) = ( ℤ≥ ‘ 𝑁 ) |
| 27 | 26 | sumeq1i | ⊢ Σ 𝑘 ∈ ( ℤ≥ ‘ ( 𝑀 + 1 ) ) ( 𝐹 ‘ 𝑘 ) = Σ 𝑘 ∈ ( ℤ≥ ‘ 𝑁 ) ( 𝐹 ‘ 𝑘 ) |
| 28 | 24 27 | oveq12i | ⊢ ( ( 𝐹 ‘ 𝑀 ) + Σ 𝑘 ∈ ( ℤ≥ ‘ ( 𝑀 + 1 ) ) ( 𝐹 ‘ 𝑘 ) ) = ( ( ( 𝐴 ↑ 𝑀 ) / ( ! ‘ 𝑀 ) ) + Σ 𝑘 ∈ ( ℤ≥ ‘ 𝑁 ) ( 𝐹 ‘ 𝑘 ) ) |
| 29 | 22 28 | eqtrdi | ⊢ ( 𝜑 → Σ 𝑘 ∈ ( ℤ≥ ‘ 𝑀 ) ( 𝐹 ‘ 𝑘 ) = ( ( ( 𝐴 ↑ 𝑀 ) / ( ! ‘ 𝑀 ) ) + Σ 𝑘 ∈ ( ℤ≥ ‘ 𝑁 ) ( 𝐹 ‘ 𝑘 ) ) ) |
| 30 | 29 | oveq2d | ⊢ ( 𝜑 → ( 𝐵 + Σ 𝑘 ∈ ( ℤ≥ ‘ 𝑀 ) ( 𝐹 ‘ 𝑘 ) ) = ( 𝐵 + ( ( ( 𝐴 ↑ 𝑀 ) / ( ! ‘ 𝑀 ) ) + Σ 𝑘 ∈ ( ℤ≥ ‘ 𝑁 ) ( 𝐹 ‘ 𝑘 ) ) ) ) |
| 31 | eftcl | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝑀 ∈ ℕ0 ) → ( ( 𝐴 ↑ 𝑀 ) / ( ! ‘ 𝑀 ) ) ∈ ℂ ) | |
| 32 | 4 3 31 | sylancl | ⊢ ( 𝜑 → ( ( 𝐴 ↑ 𝑀 ) / ( ! ‘ 𝑀 ) ) ∈ ℂ ) |
| 33 | peano2nn0 | ⊢ ( 𝑀 ∈ ℕ0 → ( 𝑀 + 1 ) ∈ ℕ0 ) | |
| 34 | 3 33 | ax-mp | ⊢ ( 𝑀 + 1 ) ∈ ℕ0 |
| 35 | 2 34 | eqeltri | ⊢ 𝑁 ∈ ℕ0 |
| 36 | 1 | eftlcl | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ0 ) → Σ 𝑘 ∈ ( ℤ≥ ‘ 𝑁 ) ( 𝐹 ‘ 𝑘 ) ∈ ℂ ) |
| 37 | 4 35 36 | sylancl | ⊢ ( 𝜑 → Σ 𝑘 ∈ ( ℤ≥ ‘ 𝑁 ) ( 𝐹 ‘ 𝑘 ) ∈ ℂ ) |
| 38 | 5 32 37 | addassd | ⊢ ( 𝜑 → ( ( 𝐵 + ( ( 𝐴 ↑ 𝑀 ) / ( ! ‘ 𝑀 ) ) ) + Σ 𝑘 ∈ ( ℤ≥ ‘ 𝑁 ) ( 𝐹 ‘ 𝑘 ) ) = ( 𝐵 + ( ( ( 𝐴 ↑ 𝑀 ) / ( ! ‘ 𝑀 ) ) + Σ 𝑘 ∈ ( ℤ≥ ‘ 𝑁 ) ( 𝐹 ‘ 𝑘 ) ) ) ) |
| 39 | 30 38 | eqtr4d | ⊢ ( 𝜑 → ( 𝐵 + Σ 𝑘 ∈ ( ℤ≥ ‘ 𝑀 ) ( 𝐹 ‘ 𝑘 ) ) = ( ( 𝐵 + ( ( 𝐴 ↑ 𝑀 ) / ( ! ‘ 𝑀 ) ) ) + Σ 𝑘 ∈ ( ℤ≥ ‘ 𝑁 ) ( 𝐹 ‘ 𝑘 ) ) ) |
| 40 | 7 | oveq1d | ⊢ ( 𝜑 → ( ( 𝐵 + ( ( 𝐴 ↑ 𝑀 ) / ( ! ‘ 𝑀 ) ) ) + Σ 𝑘 ∈ ( ℤ≥ ‘ 𝑁 ) ( 𝐹 ‘ 𝑘 ) ) = ( 𝐷 + Σ 𝑘 ∈ ( ℤ≥ ‘ 𝑁 ) ( 𝐹 ‘ 𝑘 ) ) ) |
| 41 | 6 39 40 | 3eqtrd | ⊢ ( 𝜑 → ( exp ‘ 𝐴 ) = ( 𝐷 + Σ 𝑘 ∈ ( ℤ≥ ‘ 𝑁 ) ( 𝐹 ‘ 𝑘 ) ) ) |