This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Ordering relationship for exponentiation. (Contributed by Mario Carneiro, 28-May-2016)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | sqgt0d.1 | ⊢ ( 𝜑 → 𝐴 ∈ ℝ ) | |
| leexp2rd.2 | ⊢ ( 𝜑 → 𝑀 ∈ ℕ0 ) | ||
| leexp2rd.3 | ⊢ ( 𝜑 → 𝑁 ∈ ( ℤ≥ ‘ 𝑀 ) ) | ||
| leexp2rd.4 | ⊢ ( 𝜑 → 0 ≤ 𝐴 ) | ||
| leexp2rd.5 | ⊢ ( 𝜑 → 𝐴 ≤ 1 ) | ||
| Assertion | leexp2rd | ⊢ ( 𝜑 → ( 𝐴 ↑ 𝑁 ) ≤ ( 𝐴 ↑ 𝑀 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sqgt0d.1 | ⊢ ( 𝜑 → 𝐴 ∈ ℝ ) | |
| 2 | leexp2rd.2 | ⊢ ( 𝜑 → 𝑀 ∈ ℕ0 ) | |
| 3 | leexp2rd.3 | ⊢ ( 𝜑 → 𝑁 ∈ ( ℤ≥ ‘ 𝑀 ) ) | |
| 4 | leexp2rd.4 | ⊢ ( 𝜑 → 0 ≤ 𝐴 ) | |
| 5 | leexp2rd.5 | ⊢ ( 𝜑 → 𝐴 ≤ 1 ) | |
| 6 | leexp2r | ⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝑀 ∈ ℕ0 ∧ 𝑁 ∈ ( ℤ≥ ‘ 𝑀 ) ) ∧ ( 0 ≤ 𝐴 ∧ 𝐴 ≤ 1 ) ) → ( 𝐴 ↑ 𝑁 ) ≤ ( 𝐴 ↑ 𝑀 ) ) | |
| 7 | 1 2 3 4 5 6 | syl32anc | ⊢ ( 𝜑 → ( 𝐴 ↑ 𝑁 ) ≤ ( 𝐴 ↑ 𝑀 ) ) |