This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Closure of the sum of an infinite tail of the series defining the exponential function. (Contributed by Paul Chapman, 17-Jan-2008) (Revised by Mario Carneiro, 30-Apr-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | eftl.1 | ⊢ 𝐹 = ( 𝑛 ∈ ℕ0 ↦ ( ( 𝐴 ↑ 𝑛 ) / ( ! ‘ 𝑛 ) ) ) | |
| Assertion | eftlcl | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝑀 ∈ ℕ0 ) → Σ 𝑘 ∈ ( ℤ≥ ‘ 𝑀 ) ( 𝐹 ‘ 𝑘 ) ∈ ℂ ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eftl.1 | ⊢ 𝐹 = ( 𝑛 ∈ ℕ0 ↦ ( ( 𝐴 ↑ 𝑛 ) / ( ! ‘ 𝑛 ) ) ) | |
| 2 | eqid | ⊢ ( ℤ≥ ‘ 𝑀 ) = ( ℤ≥ ‘ 𝑀 ) | |
| 3 | nn0z | ⊢ ( 𝑀 ∈ ℕ0 → 𝑀 ∈ ℤ ) | |
| 4 | 3 | adantl | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝑀 ∈ ℕ0 ) → 𝑀 ∈ ℤ ) |
| 5 | eqidd | ⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝑀 ∈ ℕ0 ) ∧ 𝑘 ∈ ( ℤ≥ ‘ 𝑀 ) ) → ( 𝐹 ‘ 𝑘 ) = ( 𝐹 ‘ 𝑘 ) ) | |
| 6 | eluznn0 | ⊢ ( ( 𝑀 ∈ ℕ0 ∧ 𝑘 ∈ ( ℤ≥ ‘ 𝑀 ) ) → 𝑘 ∈ ℕ0 ) | |
| 7 | 6 | adantll | ⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝑀 ∈ ℕ0 ) ∧ 𝑘 ∈ ( ℤ≥ ‘ 𝑀 ) ) → 𝑘 ∈ ℕ0 ) |
| 8 | 1 | eftval | ⊢ ( 𝑘 ∈ ℕ0 → ( 𝐹 ‘ 𝑘 ) = ( ( 𝐴 ↑ 𝑘 ) / ( ! ‘ 𝑘 ) ) ) |
| 9 | 7 8 | syl | ⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝑀 ∈ ℕ0 ) ∧ 𝑘 ∈ ( ℤ≥ ‘ 𝑀 ) ) → ( 𝐹 ‘ 𝑘 ) = ( ( 𝐴 ↑ 𝑘 ) / ( ! ‘ 𝑘 ) ) ) |
| 10 | simpll | ⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝑀 ∈ ℕ0 ) ∧ 𝑘 ∈ ( ℤ≥ ‘ 𝑀 ) ) → 𝐴 ∈ ℂ ) | |
| 11 | eftcl | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝑘 ∈ ℕ0 ) → ( ( 𝐴 ↑ 𝑘 ) / ( ! ‘ 𝑘 ) ) ∈ ℂ ) | |
| 12 | 10 7 11 | syl2anc | ⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝑀 ∈ ℕ0 ) ∧ 𝑘 ∈ ( ℤ≥ ‘ 𝑀 ) ) → ( ( 𝐴 ↑ 𝑘 ) / ( ! ‘ 𝑘 ) ) ∈ ℂ ) |
| 13 | 9 12 | eqeltrd | ⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝑀 ∈ ℕ0 ) ∧ 𝑘 ∈ ( ℤ≥ ‘ 𝑀 ) ) → ( 𝐹 ‘ 𝑘 ) ∈ ℂ ) |
| 14 | 1 | eftlcvg | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝑀 ∈ ℕ0 ) → seq 𝑀 ( + , 𝐹 ) ∈ dom ⇝ ) |
| 15 | 2 4 5 13 14 | isumcl | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝑀 ∈ ℕ0 ) → Σ 𝑘 ∈ ( ℤ≥ ‘ 𝑀 ) ( 𝐹 ‘ 𝑘 ) ∈ ℂ ) |