This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The absolute value of a term in the series expansion of the exponential function. (Contributed by Paul Chapman, 23-Nov-2007)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | eftabs | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐾 ∈ ℕ0 ) → ( abs ‘ ( ( 𝐴 ↑ 𝐾 ) / ( ! ‘ 𝐾 ) ) ) = ( ( ( abs ‘ 𝐴 ) ↑ 𝐾 ) / ( ! ‘ 𝐾 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | expcl | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐾 ∈ ℕ0 ) → ( 𝐴 ↑ 𝐾 ) ∈ ℂ ) | |
| 2 | faccl | ⊢ ( 𝐾 ∈ ℕ0 → ( ! ‘ 𝐾 ) ∈ ℕ ) | |
| 3 | 2 | adantl | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐾 ∈ ℕ0 ) → ( ! ‘ 𝐾 ) ∈ ℕ ) |
| 4 | 3 | nncnd | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐾 ∈ ℕ0 ) → ( ! ‘ 𝐾 ) ∈ ℂ ) |
| 5 | facne0 | ⊢ ( 𝐾 ∈ ℕ0 → ( ! ‘ 𝐾 ) ≠ 0 ) | |
| 6 | 5 | adantl | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐾 ∈ ℕ0 ) → ( ! ‘ 𝐾 ) ≠ 0 ) |
| 7 | 1 4 6 | absdivd | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐾 ∈ ℕ0 ) → ( abs ‘ ( ( 𝐴 ↑ 𝐾 ) / ( ! ‘ 𝐾 ) ) ) = ( ( abs ‘ ( 𝐴 ↑ 𝐾 ) ) / ( abs ‘ ( ! ‘ 𝐾 ) ) ) ) |
| 8 | absexp | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐾 ∈ ℕ0 ) → ( abs ‘ ( 𝐴 ↑ 𝐾 ) ) = ( ( abs ‘ 𝐴 ) ↑ 𝐾 ) ) | |
| 9 | 3 | nnred | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐾 ∈ ℕ0 ) → ( ! ‘ 𝐾 ) ∈ ℝ ) |
| 10 | 3 | nnnn0d | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐾 ∈ ℕ0 ) → ( ! ‘ 𝐾 ) ∈ ℕ0 ) |
| 11 | 10 | nn0ge0d | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐾 ∈ ℕ0 ) → 0 ≤ ( ! ‘ 𝐾 ) ) |
| 12 | 9 11 | absidd | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐾 ∈ ℕ0 ) → ( abs ‘ ( ! ‘ 𝐾 ) ) = ( ! ‘ 𝐾 ) ) |
| 13 | 8 12 | oveq12d | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐾 ∈ ℕ0 ) → ( ( abs ‘ ( 𝐴 ↑ 𝐾 ) ) / ( abs ‘ ( ! ‘ 𝐾 ) ) ) = ( ( ( abs ‘ 𝐴 ) ↑ 𝐾 ) / ( ! ‘ 𝐾 ) ) ) |
| 14 | 7 13 | eqtrd | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐾 ∈ ℕ0 ) → ( abs ‘ ( ( 𝐴 ↑ 𝐾 ) / ( ! ‘ 𝐾 ) ) ) = ( ( ( abs ‘ 𝐴 ) ↑ 𝐾 ) / ( ! ‘ 𝐾 ) ) ) |