This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Shifting the index set of a sequence. (Contributed by NM, 17-Mar-2005) (Revised by Mario Carneiro, 27-Feb-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | seqshft.1 | ⊢ 𝐹 ∈ V | |
| Assertion | seqshft | ⊢ ( ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) → seq 𝑀 ( + , ( 𝐹 shift 𝑁 ) ) = ( seq ( 𝑀 − 𝑁 ) ( + , 𝐹 ) shift 𝑁 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | seqshft.1 | ⊢ 𝐹 ∈ V | |
| 2 | seqfn | ⊢ ( 𝑀 ∈ ℤ → seq 𝑀 ( + , ( 𝐹 shift 𝑁 ) ) Fn ( ℤ≥ ‘ 𝑀 ) ) | |
| 3 | 2 | adantr | ⊢ ( ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) → seq 𝑀 ( + , ( 𝐹 shift 𝑁 ) ) Fn ( ℤ≥ ‘ 𝑀 ) ) |
| 4 | zsubcl | ⊢ ( ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) → ( 𝑀 − 𝑁 ) ∈ ℤ ) | |
| 5 | seqfn | ⊢ ( ( 𝑀 − 𝑁 ) ∈ ℤ → seq ( 𝑀 − 𝑁 ) ( + , 𝐹 ) Fn ( ℤ≥ ‘ ( 𝑀 − 𝑁 ) ) ) | |
| 6 | 4 5 | syl | ⊢ ( ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) → seq ( 𝑀 − 𝑁 ) ( + , 𝐹 ) Fn ( ℤ≥ ‘ ( 𝑀 − 𝑁 ) ) ) |
| 7 | zcn | ⊢ ( 𝑁 ∈ ℤ → 𝑁 ∈ ℂ ) | |
| 8 | 7 | adantl | ⊢ ( ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) → 𝑁 ∈ ℂ ) |
| 9 | seqex | ⊢ seq ( 𝑀 − 𝑁 ) ( + , 𝐹 ) ∈ V | |
| 10 | 9 | shftfn | ⊢ ( ( seq ( 𝑀 − 𝑁 ) ( + , 𝐹 ) Fn ( ℤ≥ ‘ ( 𝑀 − 𝑁 ) ) ∧ 𝑁 ∈ ℂ ) → ( seq ( 𝑀 − 𝑁 ) ( + , 𝐹 ) shift 𝑁 ) Fn { 𝑥 ∈ ℂ ∣ ( 𝑥 − 𝑁 ) ∈ ( ℤ≥ ‘ ( 𝑀 − 𝑁 ) ) } ) |
| 11 | 6 8 10 | syl2anc | ⊢ ( ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) → ( seq ( 𝑀 − 𝑁 ) ( + , 𝐹 ) shift 𝑁 ) Fn { 𝑥 ∈ ℂ ∣ ( 𝑥 − 𝑁 ) ∈ ( ℤ≥ ‘ ( 𝑀 − 𝑁 ) ) } ) |
| 12 | simpr | ⊢ ( ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) → 𝑁 ∈ ℤ ) | |
| 13 | shftuz | ⊢ ( ( 𝑁 ∈ ℤ ∧ ( 𝑀 − 𝑁 ) ∈ ℤ ) → { 𝑥 ∈ ℂ ∣ ( 𝑥 − 𝑁 ) ∈ ( ℤ≥ ‘ ( 𝑀 − 𝑁 ) ) } = ( ℤ≥ ‘ ( ( 𝑀 − 𝑁 ) + 𝑁 ) ) ) | |
| 14 | 12 4 13 | syl2anc | ⊢ ( ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) → { 𝑥 ∈ ℂ ∣ ( 𝑥 − 𝑁 ) ∈ ( ℤ≥ ‘ ( 𝑀 − 𝑁 ) ) } = ( ℤ≥ ‘ ( ( 𝑀 − 𝑁 ) + 𝑁 ) ) ) |
| 15 | zcn | ⊢ ( 𝑀 ∈ ℤ → 𝑀 ∈ ℂ ) | |
| 16 | npcan | ⊢ ( ( 𝑀 ∈ ℂ ∧ 𝑁 ∈ ℂ ) → ( ( 𝑀 − 𝑁 ) + 𝑁 ) = 𝑀 ) | |
| 17 | 15 7 16 | syl2an | ⊢ ( ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) → ( ( 𝑀 − 𝑁 ) + 𝑁 ) = 𝑀 ) |
| 18 | 17 | fveq2d | ⊢ ( ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) → ( ℤ≥ ‘ ( ( 𝑀 − 𝑁 ) + 𝑁 ) ) = ( ℤ≥ ‘ 𝑀 ) ) |
| 19 | 14 18 | eqtrd | ⊢ ( ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) → { 𝑥 ∈ ℂ ∣ ( 𝑥 − 𝑁 ) ∈ ( ℤ≥ ‘ ( 𝑀 − 𝑁 ) ) } = ( ℤ≥ ‘ 𝑀 ) ) |
| 20 | 19 | fneq2d | ⊢ ( ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) → ( ( seq ( 𝑀 − 𝑁 ) ( + , 𝐹 ) shift 𝑁 ) Fn { 𝑥 ∈ ℂ ∣ ( 𝑥 − 𝑁 ) ∈ ( ℤ≥ ‘ ( 𝑀 − 𝑁 ) ) } ↔ ( seq ( 𝑀 − 𝑁 ) ( + , 𝐹 ) shift 𝑁 ) Fn ( ℤ≥ ‘ 𝑀 ) ) ) |
| 21 | 11 20 | mpbid | ⊢ ( ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) → ( seq ( 𝑀 − 𝑁 ) ( + , 𝐹 ) shift 𝑁 ) Fn ( ℤ≥ ‘ 𝑀 ) ) |
| 22 | negsub | ⊢ ( ( 𝑀 ∈ ℂ ∧ 𝑁 ∈ ℂ ) → ( 𝑀 + - 𝑁 ) = ( 𝑀 − 𝑁 ) ) | |
| 23 | 15 7 22 | syl2an | ⊢ ( ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) → ( 𝑀 + - 𝑁 ) = ( 𝑀 − 𝑁 ) ) |
| 24 | 23 | adantr | ⊢ ( ( ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) ∧ 𝑧 ∈ ( ℤ≥ ‘ 𝑀 ) ) → ( 𝑀 + - 𝑁 ) = ( 𝑀 − 𝑁 ) ) |
| 25 | 24 | seqeq1d | ⊢ ( ( ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) ∧ 𝑧 ∈ ( ℤ≥ ‘ 𝑀 ) ) → seq ( 𝑀 + - 𝑁 ) ( + , 𝐹 ) = seq ( 𝑀 − 𝑁 ) ( + , 𝐹 ) ) |
| 26 | eluzelcn | ⊢ ( 𝑧 ∈ ( ℤ≥ ‘ 𝑀 ) → 𝑧 ∈ ℂ ) | |
| 27 | negsub | ⊢ ( ( 𝑧 ∈ ℂ ∧ 𝑁 ∈ ℂ ) → ( 𝑧 + - 𝑁 ) = ( 𝑧 − 𝑁 ) ) | |
| 28 | 26 8 27 | syl2anr | ⊢ ( ( ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) ∧ 𝑧 ∈ ( ℤ≥ ‘ 𝑀 ) ) → ( 𝑧 + - 𝑁 ) = ( 𝑧 − 𝑁 ) ) |
| 29 | 25 28 | fveq12d | ⊢ ( ( ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) ∧ 𝑧 ∈ ( ℤ≥ ‘ 𝑀 ) ) → ( seq ( 𝑀 + - 𝑁 ) ( + , 𝐹 ) ‘ ( 𝑧 + - 𝑁 ) ) = ( seq ( 𝑀 − 𝑁 ) ( + , 𝐹 ) ‘ ( 𝑧 − 𝑁 ) ) ) |
| 30 | simpr | ⊢ ( ( ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) ∧ 𝑧 ∈ ( ℤ≥ ‘ 𝑀 ) ) → 𝑧 ∈ ( ℤ≥ ‘ 𝑀 ) ) | |
| 31 | znegcl | ⊢ ( 𝑁 ∈ ℤ → - 𝑁 ∈ ℤ ) | |
| 32 | 31 | ad2antlr | ⊢ ( ( ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) ∧ 𝑧 ∈ ( ℤ≥ ‘ 𝑀 ) ) → - 𝑁 ∈ ℤ ) |
| 33 | elfzelz | ⊢ ( 𝑦 ∈ ( 𝑀 ... 𝑧 ) → 𝑦 ∈ ℤ ) | |
| 34 | 33 | zcnd | ⊢ ( 𝑦 ∈ ( 𝑀 ... 𝑧 ) → 𝑦 ∈ ℂ ) |
| 35 | 1 | shftval | ⊢ ( ( 𝑁 ∈ ℂ ∧ 𝑦 ∈ ℂ ) → ( ( 𝐹 shift 𝑁 ) ‘ 𝑦 ) = ( 𝐹 ‘ ( 𝑦 − 𝑁 ) ) ) |
| 36 | negsub | ⊢ ( ( 𝑦 ∈ ℂ ∧ 𝑁 ∈ ℂ ) → ( 𝑦 + - 𝑁 ) = ( 𝑦 − 𝑁 ) ) | |
| 37 | 36 | ancoms | ⊢ ( ( 𝑁 ∈ ℂ ∧ 𝑦 ∈ ℂ ) → ( 𝑦 + - 𝑁 ) = ( 𝑦 − 𝑁 ) ) |
| 38 | 37 | fveq2d | ⊢ ( ( 𝑁 ∈ ℂ ∧ 𝑦 ∈ ℂ ) → ( 𝐹 ‘ ( 𝑦 + - 𝑁 ) ) = ( 𝐹 ‘ ( 𝑦 − 𝑁 ) ) ) |
| 39 | 35 38 | eqtr4d | ⊢ ( ( 𝑁 ∈ ℂ ∧ 𝑦 ∈ ℂ ) → ( ( 𝐹 shift 𝑁 ) ‘ 𝑦 ) = ( 𝐹 ‘ ( 𝑦 + - 𝑁 ) ) ) |
| 40 | 7 34 39 | syl2an | ⊢ ( ( 𝑁 ∈ ℤ ∧ 𝑦 ∈ ( 𝑀 ... 𝑧 ) ) → ( ( 𝐹 shift 𝑁 ) ‘ 𝑦 ) = ( 𝐹 ‘ ( 𝑦 + - 𝑁 ) ) ) |
| 41 | 40 | ad4ant24 | ⊢ ( ( ( ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) ∧ 𝑧 ∈ ( ℤ≥ ‘ 𝑀 ) ) ∧ 𝑦 ∈ ( 𝑀 ... 𝑧 ) ) → ( ( 𝐹 shift 𝑁 ) ‘ 𝑦 ) = ( 𝐹 ‘ ( 𝑦 + - 𝑁 ) ) ) |
| 42 | 30 32 41 | seqshft2 | ⊢ ( ( ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) ∧ 𝑧 ∈ ( ℤ≥ ‘ 𝑀 ) ) → ( seq 𝑀 ( + , ( 𝐹 shift 𝑁 ) ) ‘ 𝑧 ) = ( seq ( 𝑀 + - 𝑁 ) ( + , 𝐹 ) ‘ ( 𝑧 + - 𝑁 ) ) ) |
| 43 | 9 | shftval | ⊢ ( ( 𝑁 ∈ ℂ ∧ 𝑧 ∈ ℂ ) → ( ( seq ( 𝑀 − 𝑁 ) ( + , 𝐹 ) shift 𝑁 ) ‘ 𝑧 ) = ( seq ( 𝑀 − 𝑁 ) ( + , 𝐹 ) ‘ ( 𝑧 − 𝑁 ) ) ) |
| 44 | 8 26 43 | syl2an | ⊢ ( ( ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) ∧ 𝑧 ∈ ( ℤ≥ ‘ 𝑀 ) ) → ( ( seq ( 𝑀 − 𝑁 ) ( + , 𝐹 ) shift 𝑁 ) ‘ 𝑧 ) = ( seq ( 𝑀 − 𝑁 ) ( + , 𝐹 ) ‘ ( 𝑧 − 𝑁 ) ) ) |
| 45 | 29 42 44 | 3eqtr4d | ⊢ ( ( ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) ∧ 𝑧 ∈ ( ℤ≥ ‘ 𝑀 ) ) → ( seq 𝑀 ( + , ( 𝐹 shift 𝑁 ) ) ‘ 𝑧 ) = ( ( seq ( 𝑀 − 𝑁 ) ( + , 𝐹 ) shift 𝑁 ) ‘ 𝑧 ) ) |
| 46 | 3 21 45 | eqfnfvd | ⊢ ( ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) → seq 𝑀 ( + , ( 𝐹 shift 𝑁 ) ) = ( seq ( 𝑀 − 𝑁 ) ( + , 𝐹 ) shift 𝑁 ) ) |