This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Division into a fraction. (Contributed by Mario Carneiro, 27-May-2016)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | div1d.1 | ⊢ ( 𝜑 → 𝐴 ∈ ℂ ) | |
| divcld.2 | ⊢ ( 𝜑 → 𝐵 ∈ ℂ ) | ||
| divmuld.3 | ⊢ ( 𝜑 → 𝐶 ∈ ℂ ) | ||
| divmuld.4 | ⊢ ( 𝜑 → 𝐵 ≠ 0 ) | ||
| divdiv23d.5 | ⊢ ( 𝜑 → 𝐶 ≠ 0 ) | ||
| Assertion | divdiv1d | ⊢ ( 𝜑 → ( ( 𝐴 / 𝐵 ) / 𝐶 ) = ( 𝐴 / ( 𝐵 · 𝐶 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | div1d.1 | ⊢ ( 𝜑 → 𝐴 ∈ ℂ ) | |
| 2 | divcld.2 | ⊢ ( 𝜑 → 𝐵 ∈ ℂ ) | |
| 3 | divmuld.3 | ⊢ ( 𝜑 → 𝐶 ∈ ℂ ) | |
| 4 | divmuld.4 | ⊢ ( 𝜑 → 𝐵 ≠ 0 ) | |
| 5 | divdiv23d.5 | ⊢ ( 𝜑 → 𝐶 ≠ 0 ) | |
| 6 | divdiv1 | ⊢ ( ( 𝐴 ∈ ℂ ∧ ( 𝐵 ∈ ℂ ∧ 𝐵 ≠ 0 ) ∧ ( 𝐶 ∈ ℂ ∧ 𝐶 ≠ 0 ) ) → ( ( 𝐴 / 𝐵 ) / 𝐶 ) = ( 𝐴 / ( 𝐵 · 𝐶 ) ) ) | |
| 7 | 1 2 4 3 5 6 | syl122anc | ⊢ ( 𝜑 → ( ( 𝐴 / 𝐵 ) / 𝐶 ) = ( 𝐴 / ( 𝐵 · 𝐶 ) ) ) |