This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for dmdprdsplit . (Contributed by Mario Carneiro, 26-Apr-2016)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | dprdsplit.2 | ⊢ ( 𝜑 → 𝑆 : 𝐼 ⟶ ( SubGrp ‘ 𝐺 ) ) | |
| dprdsplit.i | ⊢ ( 𝜑 → ( 𝐶 ∩ 𝐷 ) = ∅ ) | ||
| dprdsplit.u | ⊢ ( 𝜑 → 𝐼 = ( 𝐶 ∪ 𝐷 ) ) | ||
| dmdprdsplit.z | ⊢ 𝑍 = ( Cntz ‘ 𝐺 ) | ||
| dmdprdsplit.0 | ⊢ 0 = ( 0g ‘ 𝐺 ) | ||
| dmdprdsplit2.1 | ⊢ ( 𝜑 → 𝐺 dom DProd ( 𝑆 ↾ 𝐶 ) ) | ||
| dmdprdsplit2.2 | ⊢ ( 𝜑 → 𝐺 dom DProd ( 𝑆 ↾ 𝐷 ) ) | ||
| dmdprdsplit2.3 | ⊢ ( 𝜑 → ( 𝐺 DProd ( 𝑆 ↾ 𝐶 ) ) ⊆ ( 𝑍 ‘ ( 𝐺 DProd ( 𝑆 ↾ 𝐷 ) ) ) ) | ||
| dmdprdsplit2.4 | ⊢ ( 𝜑 → ( ( 𝐺 DProd ( 𝑆 ↾ 𝐶 ) ) ∩ ( 𝐺 DProd ( 𝑆 ↾ 𝐷 ) ) ) = { 0 } ) | ||
| dmdprdsplit2lem.k | ⊢ 𝐾 = ( mrCls ‘ ( SubGrp ‘ 𝐺 ) ) | ||
| Assertion | dmdprdsplit2lem | ⊢ ( ( 𝜑 ∧ 𝑋 ∈ 𝐶 ) → ( ( 𝑌 ∈ 𝐼 → ( 𝑋 ≠ 𝑌 → ( 𝑆 ‘ 𝑋 ) ⊆ ( 𝑍 ‘ ( 𝑆 ‘ 𝑌 ) ) ) ) ∧ ( ( 𝑆 ‘ 𝑋 ) ∩ ( 𝐾 ‘ ∪ ( 𝑆 “ ( 𝐼 ∖ { 𝑋 } ) ) ) ) ⊆ { 0 } ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dprdsplit.2 | ⊢ ( 𝜑 → 𝑆 : 𝐼 ⟶ ( SubGrp ‘ 𝐺 ) ) | |
| 2 | dprdsplit.i | ⊢ ( 𝜑 → ( 𝐶 ∩ 𝐷 ) = ∅ ) | |
| 3 | dprdsplit.u | ⊢ ( 𝜑 → 𝐼 = ( 𝐶 ∪ 𝐷 ) ) | |
| 4 | dmdprdsplit.z | ⊢ 𝑍 = ( Cntz ‘ 𝐺 ) | |
| 5 | dmdprdsplit.0 | ⊢ 0 = ( 0g ‘ 𝐺 ) | |
| 6 | dmdprdsplit2.1 | ⊢ ( 𝜑 → 𝐺 dom DProd ( 𝑆 ↾ 𝐶 ) ) | |
| 7 | dmdprdsplit2.2 | ⊢ ( 𝜑 → 𝐺 dom DProd ( 𝑆 ↾ 𝐷 ) ) | |
| 8 | dmdprdsplit2.3 | ⊢ ( 𝜑 → ( 𝐺 DProd ( 𝑆 ↾ 𝐶 ) ) ⊆ ( 𝑍 ‘ ( 𝐺 DProd ( 𝑆 ↾ 𝐷 ) ) ) ) | |
| 9 | dmdprdsplit2.4 | ⊢ ( 𝜑 → ( ( 𝐺 DProd ( 𝑆 ↾ 𝐶 ) ) ∩ ( 𝐺 DProd ( 𝑆 ↾ 𝐷 ) ) ) = { 0 } ) | |
| 10 | dmdprdsplit2lem.k | ⊢ 𝐾 = ( mrCls ‘ ( SubGrp ‘ 𝐺 ) ) | |
| 11 | 3 | adantr | ⊢ ( ( 𝜑 ∧ 𝑋 ∈ 𝐶 ) → 𝐼 = ( 𝐶 ∪ 𝐷 ) ) |
| 12 | 11 | eleq2d | ⊢ ( ( 𝜑 ∧ 𝑋 ∈ 𝐶 ) → ( 𝑌 ∈ 𝐼 ↔ 𝑌 ∈ ( 𝐶 ∪ 𝐷 ) ) ) |
| 13 | elun | ⊢ ( 𝑌 ∈ ( 𝐶 ∪ 𝐷 ) ↔ ( 𝑌 ∈ 𝐶 ∨ 𝑌 ∈ 𝐷 ) ) | |
| 14 | 12 13 | bitrdi | ⊢ ( ( 𝜑 ∧ 𝑋 ∈ 𝐶 ) → ( 𝑌 ∈ 𝐼 ↔ ( 𝑌 ∈ 𝐶 ∨ 𝑌 ∈ 𝐷 ) ) ) |
| 15 | 6 | ad2antrr | ⊢ ( ( ( 𝜑 ∧ 𝑋 ∈ 𝐶 ) ∧ ( 𝑌 ∈ 𝐶 ∧ 𝑋 ≠ 𝑌 ) ) → 𝐺 dom DProd ( 𝑆 ↾ 𝐶 ) ) |
| 16 | ssun1 | ⊢ 𝐶 ⊆ ( 𝐶 ∪ 𝐷 ) | |
| 17 | 16 3 | sseqtrrid | ⊢ ( 𝜑 → 𝐶 ⊆ 𝐼 ) |
| 18 | 1 17 | fssresd | ⊢ ( 𝜑 → ( 𝑆 ↾ 𝐶 ) : 𝐶 ⟶ ( SubGrp ‘ 𝐺 ) ) |
| 19 | 18 | fdmd | ⊢ ( 𝜑 → dom ( 𝑆 ↾ 𝐶 ) = 𝐶 ) |
| 20 | 19 | ad2antrr | ⊢ ( ( ( 𝜑 ∧ 𝑋 ∈ 𝐶 ) ∧ ( 𝑌 ∈ 𝐶 ∧ 𝑋 ≠ 𝑌 ) ) → dom ( 𝑆 ↾ 𝐶 ) = 𝐶 ) |
| 21 | simplr | ⊢ ( ( ( 𝜑 ∧ 𝑋 ∈ 𝐶 ) ∧ ( 𝑌 ∈ 𝐶 ∧ 𝑋 ≠ 𝑌 ) ) → 𝑋 ∈ 𝐶 ) | |
| 22 | simprl | ⊢ ( ( ( 𝜑 ∧ 𝑋 ∈ 𝐶 ) ∧ ( 𝑌 ∈ 𝐶 ∧ 𝑋 ≠ 𝑌 ) ) → 𝑌 ∈ 𝐶 ) | |
| 23 | simprr | ⊢ ( ( ( 𝜑 ∧ 𝑋 ∈ 𝐶 ) ∧ ( 𝑌 ∈ 𝐶 ∧ 𝑋 ≠ 𝑌 ) ) → 𝑋 ≠ 𝑌 ) | |
| 24 | 15 20 21 22 23 4 | dprdcntz | ⊢ ( ( ( 𝜑 ∧ 𝑋 ∈ 𝐶 ) ∧ ( 𝑌 ∈ 𝐶 ∧ 𝑋 ≠ 𝑌 ) ) → ( ( 𝑆 ↾ 𝐶 ) ‘ 𝑋 ) ⊆ ( 𝑍 ‘ ( ( 𝑆 ↾ 𝐶 ) ‘ 𝑌 ) ) ) |
| 25 | fvres | ⊢ ( 𝑋 ∈ 𝐶 → ( ( 𝑆 ↾ 𝐶 ) ‘ 𝑋 ) = ( 𝑆 ‘ 𝑋 ) ) | |
| 26 | 25 | ad2antlr | ⊢ ( ( ( 𝜑 ∧ 𝑋 ∈ 𝐶 ) ∧ ( 𝑌 ∈ 𝐶 ∧ 𝑋 ≠ 𝑌 ) ) → ( ( 𝑆 ↾ 𝐶 ) ‘ 𝑋 ) = ( 𝑆 ‘ 𝑋 ) ) |
| 27 | fvres | ⊢ ( 𝑌 ∈ 𝐶 → ( ( 𝑆 ↾ 𝐶 ) ‘ 𝑌 ) = ( 𝑆 ‘ 𝑌 ) ) | |
| 28 | 27 | ad2antrl | ⊢ ( ( ( 𝜑 ∧ 𝑋 ∈ 𝐶 ) ∧ ( 𝑌 ∈ 𝐶 ∧ 𝑋 ≠ 𝑌 ) ) → ( ( 𝑆 ↾ 𝐶 ) ‘ 𝑌 ) = ( 𝑆 ‘ 𝑌 ) ) |
| 29 | 28 | fveq2d | ⊢ ( ( ( 𝜑 ∧ 𝑋 ∈ 𝐶 ) ∧ ( 𝑌 ∈ 𝐶 ∧ 𝑋 ≠ 𝑌 ) ) → ( 𝑍 ‘ ( ( 𝑆 ↾ 𝐶 ) ‘ 𝑌 ) ) = ( 𝑍 ‘ ( 𝑆 ‘ 𝑌 ) ) ) |
| 30 | 24 26 29 | 3sstr3d | ⊢ ( ( ( 𝜑 ∧ 𝑋 ∈ 𝐶 ) ∧ ( 𝑌 ∈ 𝐶 ∧ 𝑋 ≠ 𝑌 ) ) → ( 𝑆 ‘ 𝑋 ) ⊆ ( 𝑍 ‘ ( 𝑆 ‘ 𝑌 ) ) ) |
| 31 | 30 | exp32 | ⊢ ( ( 𝜑 ∧ 𝑋 ∈ 𝐶 ) → ( 𝑌 ∈ 𝐶 → ( 𝑋 ≠ 𝑌 → ( 𝑆 ‘ 𝑋 ) ⊆ ( 𝑍 ‘ ( 𝑆 ‘ 𝑌 ) ) ) ) ) |
| 32 | 25 | ad2antlr | ⊢ ( ( ( 𝜑 ∧ 𝑋 ∈ 𝐶 ) ∧ ( 𝑌 ∈ 𝐷 ∧ 𝑋 ≠ 𝑌 ) ) → ( ( 𝑆 ↾ 𝐶 ) ‘ 𝑋 ) = ( 𝑆 ‘ 𝑋 ) ) |
| 33 | 6 | ad2antrr | ⊢ ( ( ( 𝜑 ∧ 𝑋 ∈ 𝐶 ) ∧ ( 𝑌 ∈ 𝐷 ∧ 𝑋 ≠ 𝑌 ) ) → 𝐺 dom DProd ( 𝑆 ↾ 𝐶 ) ) |
| 34 | 19 | ad2antrr | ⊢ ( ( ( 𝜑 ∧ 𝑋 ∈ 𝐶 ) ∧ ( 𝑌 ∈ 𝐷 ∧ 𝑋 ≠ 𝑌 ) ) → dom ( 𝑆 ↾ 𝐶 ) = 𝐶 ) |
| 35 | simplr | ⊢ ( ( ( 𝜑 ∧ 𝑋 ∈ 𝐶 ) ∧ ( 𝑌 ∈ 𝐷 ∧ 𝑋 ≠ 𝑌 ) ) → 𝑋 ∈ 𝐶 ) | |
| 36 | 33 34 35 | dprdub | ⊢ ( ( ( 𝜑 ∧ 𝑋 ∈ 𝐶 ) ∧ ( 𝑌 ∈ 𝐷 ∧ 𝑋 ≠ 𝑌 ) ) → ( ( 𝑆 ↾ 𝐶 ) ‘ 𝑋 ) ⊆ ( 𝐺 DProd ( 𝑆 ↾ 𝐶 ) ) ) |
| 37 | 32 36 | eqsstrrd | ⊢ ( ( ( 𝜑 ∧ 𝑋 ∈ 𝐶 ) ∧ ( 𝑌 ∈ 𝐷 ∧ 𝑋 ≠ 𝑌 ) ) → ( 𝑆 ‘ 𝑋 ) ⊆ ( 𝐺 DProd ( 𝑆 ↾ 𝐶 ) ) ) |
| 38 | 8 | ad2antrr | ⊢ ( ( ( 𝜑 ∧ 𝑋 ∈ 𝐶 ) ∧ ( 𝑌 ∈ 𝐷 ∧ 𝑋 ≠ 𝑌 ) ) → ( 𝐺 DProd ( 𝑆 ↾ 𝐶 ) ) ⊆ ( 𝑍 ‘ ( 𝐺 DProd ( 𝑆 ↾ 𝐷 ) ) ) ) |
| 39 | eqid | ⊢ ( Base ‘ 𝐺 ) = ( Base ‘ 𝐺 ) | |
| 40 | 39 | dprdssv | ⊢ ( 𝐺 DProd ( 𝑆 ↾ 𝐷 ) ) ⊆ ( Base ‘ 𝐺 ) |
| 41 | fvres | ⊢ ( 𝑌 ∈ 𝐷 → ( ( 𝑆 ↾ 𝐷 ) ‘ 𝑌 ) = ( 𝑆 ‘ 𝑌 ) ) | |
| 42 | 41 | ad2antrl | ⊢ ( ( ( 𝜑 ∧ 𝑋 ∈ 𝐶 ) ∧ ( 𝑌 ∈ 𝐷 ∧ 𝑋 ≠ 𝑌 ) ) → ( ( 𝑆 ↾ 𝐷 ) ‘ 𝑌 ) = ( 𝑆 ‘ 𝑌 ) ) |
| 43 | 7 | ad2antrr | ⊢ ( ( ( 𝜑 ∧ 𝑋 ∈ 𝐶 ) ∧ ( 𝑌 ∈ 𝐷 ∧ 𝑋 ≠ 𝑌 ) ) → 𝐺 dom DProd ( 𝑆 ↾ 𝐷 ) ) |
| 44 | ssun2 | ⊢ 𝐷 ⊆ ( 𝐶 ∪ 𝐷 ) | |
| 45 | 44 3 | sseqtrrid | ⊢ ( 𝜑 → 𝐷 ⊆ 𝐼 ) |
| 46 | 1 45 | fssresd | ⊢ ( 𝜑 → ( 𝑆 ↾ 𝐷 ) : 𝐷 ⟶ ( SubGrp ‘ 𝐺 ) ) |
| 47 | 46 | fdmd | ⊢ ( 𝜑 → dom ( 𝑆 ↾ 𝐷 ) = 𝐷 ) |
| 48 | 47 | ad2antrr | ⊢ ( ( ( 𝜑 ∧ 𝑋 ∈ 𝐶 ) ∧ ( 𝑌 ∈ 𝐷 ∧ 𝑋 ≠ 𝑌 ) ) → dom ( 𝑆 ↾ 𝐷 ) = 𝐷 ) |
| 49 | simprl | ⊢ ( ( ( 𝜑 ∧ 𝑋 ∈ 𝐶 ) ∧ ( 𝑌 ∈ 𝐷 ∧ 𝑋 ≠ 𝑌 ) ) → 𝑌 ∈ 𝐷 ) | |
| 50 | 43 48 49 | dprdub | ⊢ ( ( ( 𝜑 ∧ 𝑋 ∈ 𝐶 ) ∧ ( 𝑌 ∈ 𝐷 ∧ 𝑋 ≠ 𝑌 ) ) → ( ( 𝑆 ↾ 𝐷 ) ‘ 𝑌 ) ⊆ ( 𝐺 DProd ( 𝑆 ↾ 𝐷 ) ) ) |
| 51 | 42 50 | eqsstrrd | ⊢ ( ( ( 𝜑 ∧ 𝑋 ∈ 𝐶 ) ∧ ( 𝑌 ∈ 𝐷 ∧ 𝑋 ≠ 𝑌 ) ) → ( 𝑆 ‘ 𝑌 ) ⊆ ( 𝐺 DProd ( 𝑆 ↾ 𝐷 ) ) ) |
| 52 | 39 4 | cntz2ss | ⊢ ( ( ( 𝐺 DProd ( 𝑆 ↾ 𝐷 ) ) ⊆ ( Base ‘ 𝐺 ) ∧ ( 𝑆 ‘ 𝑌 ) ⊆ ( 𝐺 DProd ( 𝑆 ↾ 𝐷 ) ) ) → ( 𝑍 ‘ ( 𝐺 DProd ( 𝑆 ↾ 𝐷 ) ) ) ⊆ ( 𝑍 ‘ ( 𝑆 ‘ 𝑌 ) ) ) |
| 53 | 40 51 52 | sylancr | ⊢ ( ( ( 𝜑 ∧ 𝑋 ∈ 𝐶 ) ∧ ( 𝑌 ∈ 𝐷 ∧ 𝑋 ≠ 𝑌 ) ) → ( 𝑍 ‘ ( 𝐺 DProd ( 𝑆 ↾ 𝐷 ) ) ) ⊆ ( 𝑍 ‘ ( 𝑆 ‘ 𝑌 ) ) ) |
| 54 | 38 53 | sstrd | ⊢ ( ( ( 𝜑 ∧ 𝑋 ∈ 𝐶 ) ∧ ( 𝑌 ∈ 𝐷 ∧ 𝑋 ≠ 𝑌 ) ) → ( 𝐺 DProd ( 𝑆 ↾ 𝐶 ) ) ⊆ ( 𝑍 ‘ ( 𝑆 ‘ 𝑌 ) ) ) |
| 55 | 37 54 | sstrd | ⊢ ( ( ( 𝜑 ∧ 𝑋 ∈ 𝐶 ) ∧ ( 𝑌 ∈ 𝐷 ∧ 𝑋 ≠ 𝑌 ) ) → ( 𝑆 ‘ 𝑋 ) ⊆ ( 𝑍 ‘ ( 𝑆 ‘ 𝑌 ) ) ) |
| 56 | 55 | exp32 | ⊢ ( ( 𝜑 ∧ 𝑋 ∈ 𝐶 ) → ( 𝑌 ∈ 𝐷 → ( 𝑋 ≠ 𝑌 → ( 𝑆 ‘ 𝑋 ) ⊆ ( 𝑍 ‘ ( 𝑆 ‘ 𝑌 ) ) ) ) ) |
| 57 | 31 56 | jaod | ⊢ ( ( 𝜑 ∧ 𝑋 ∈ 𝐶 ) → ( ( 𝑌 ∈ 𝐶 ∨ 𝑌 ∈ 𝐷 ) → ( 𝑋 ≠ 𝑌 → ( 𝑆 ‘ 𝑋 ) ⊆ ( 𝑍 ‘ ( 𝑆 ‘ 𝑌 ) ) ) ) ) |
| 58 | 14 57 | sylbid | ⊢ ( ( 𝜑 ∧ 𝑋 ∈ 𝐶 ) → ( 𝑌 ∈ 𝐼 → ( 𝑋 ≠ 𝑌 → ( 𝑆 ‘ 𝑋 ) ⊆ ( 𝑍 ‘ ( 𝑆 ‘ 𝑌 ) ) ) ) ) |
| 59 | dprdgrp | ⊢ ( 𝐺 dom DProd ( 𝑆 ↾ 𝐶 ) → 𝐺 ∈ Grp ) | |
| 60 | 6 59 | syl | ⊢ ( 𝜑 → 𝐺 ∈ Grp ) |
| 61 | 60 | adantr | ⊢ ( ( 𝜑 ∧ 𝑋 ∈ 𝐶 ) → 𝐺 ∈ Grp ) |
| 62 | 39 | subgacs | ⊢ ( 𝐺 ∈ Grp → ( SubGrp ‘ 𝐺 ) ∈ ( ACS ‘ ( Base ‘ 𝐺 ) ) ) |
| 63 | acsmre | ⊢ ( ( SubGrp ‘ 𝐺 ) ∈ ( ACS ‘ ( Base ‘ 𝐺 ) ) → ( SubGrp ‘ 𝐺 ) ∈ ( Moore ‘ ( Base ‘ 𝐺 ) ) ) | |
| 64 | 61 62 63 | 3syl | ⊢ ( ( 𝜑 ∧ 𝑋 ∈ 𝐶 ) → ( SubGrp ‘ 𝐺 ) ∈ ( Moore ‘ ( Base ‘ 𝐺 ) ) ) |
| 65 | difundir | ⊢ ( ( 𝐶 ∪ 𝐷 ) ∖ { 𝑋 } ) = ( ( 𝐶 ∖ { 𝑋 } ) ∪ ( 𝐷 ∖ { 𝑋 } ) ) | |
| 66 | 11 | difeq1d | ⊢ ( ( 𝜑 ∧ 𝑋 ∈ 𝐶 ) → ( 𝐼 ∖ { 𝑋 } ) = ( ( 𝐶 ∪ 𝐷 ) ∖ { 𝑋 } ) ) |
| 67 | simpr | ⊢ ( ( 𝜑 ∧ 𝑋 ∈ 𝐶 ) → 𝑋 ∈ 𝐶 ) | |
| 68 | 67 | snssd | ⊢ ( ( 𝜑 ∧ 𝑋 ∈ 𝐶 ) → { 𝑋 } ⊆ 𝐶 ) |
| 69 | sslin | ⊢ ( { 𝑋 } ⊆ 𝐶 → ( 𝐷 ∩ { 𝑋 } ) ⊆ ( 𝐷 ∩ 𝐶 ) ) | |
| 70 | 68 69 | syl | ⊢ ( ( 𝜑 ∧ 𝑋 ∈ 𝐶 ) → ( 𝐷 ∩ { 𝑋 } ) ⊆ ( 𝐷 ∩ 𝐶 ) ) |
| 71 | incom | ⊢ ( 𝐶 ∩ 𝐷 ) = ( 𝐷 ∩ 𝐶 ) | |
| 72 | 2 | adantr | ⊢ ( ( 𝜑 ∧ 𝑋 ∈ 𝐶 ) → ( 𝐶 ∩ 𝐷 ) = ∅ ) |
| 73 | 71 72 | eqtr3id | ⊢ ( ( 𝜑 ∧ 𝑋 ∈ 𝐶 ) → ( 𝐷 ∩ 𝐶 ) = ∅ ) |
| 74 | sseq0 | ⊢ ( ( ( 𝐷 ∩ { 𝑋 } ) ⊆ ( 𝐷 ∩ 𝐶 ) ∧ ( 𝐷 ∩ 𝐶 ) = ∅ ) → ( 𝐷 ∩ { 𝑋 } ) = ∅ ) | |
| 75 | 70 73 74 | syl2anc | ⊢ ( ( 𝜑 ∧ 𝑋 ∈ 𝐶 ) → ( 𝐷 ∩ { 𝑋 } ) = ∅ ) |
| 76 | disj3 | ⊢ ( ( 𝐷 ∩ { 𝑋 } ) = ∅ ↔ 𝐷 = ( 𝐷 ∖ { 𝑋 } ) ) | |
| 77 | 75 76 | sylib | ⊢ ( ( 𝜑 ∧ 𝑋 ∈ 𝐶 ) → 𝐷 = ( 𝐷 ∖ { 𝑋 } ) ) |
| 78 | 77 | uneq2d | ⊢ ( ( 𝜑 ∧ 𝑋 ∈ 𝐶 ) → ( ( 𝐶 ∖ { 𝑋 } ) ∪ 𝐷 ) = ( ( 𝐶 ∖ { 𝑋 } ) ∪ ( 𝐷 ∖ { 𝑋 } ) ) ) |
| 79 | 65 66 78 | 3eqtr4a | ⊢ ( ( 𝜑 ∧ 𝑋 ∈ 𝐶 ) → ( 𝐼 ∖ { 𝑋 } ) = ( ( 𝐶 ∖ { 𝑋 } ) ∪ 𝐷 ) ) |
| 80 | 79 | imaeq2d | ⊢ ( ( 𝜑 ∧ 𝑋 ∈ 𝐶 ) → ( 𝑆 “ ( 𝐼 ∖ { 𝑋 } ) ) = ( 𝑆 “ ( ( 𝐶 ∖ { 𝑋 } ) ∪ 𝐷 ) ) ) |
| 81 | imaundi | ⊢ ( 𝑆 “ ( ( 𝐶 ∖ { 𝑋 } ) ∪ 𝐷 ) ) = ( ( 𝑆 “ ( 𝐶 ∖ { 𝑋 } ) ) ∪ ( 𝑆 “ 𝐷 ) ) | |
| 82 | 80 81 | eqtrdi | ⊢ ( ( 𝜑 ∧ 𝑋 ∈ 𝐶 ) → ( 𝑆 “ ( 𝐼 ∖ { 𝑋 } ) ) = ( ( 𝑆 “ ( 𝐶 ∖ { 𝑋 } ) ) ∪ ( 𝑆 “ 𝐷 ) ) ) |
| 83 | 82 | unieqd | ⊢ ( ( 𝜑 ∧ 𝑋 ∈ 𝐶 ) → ∪ ( 𝑆 “ ( 𝐼 ∖ { 𝑋 } ) ) = ∪ ( ( 𝑆 “ ( 𝐶 ∖ { 𝑋 } ) ) ∪ ( 𝑆 “ 𝐷 ) ) ) |
| 84 | uniun | ⊢ ∪ ( ( 𝑆 “ ( 𝐶 ∖ { 𝑋 } ) ) ∪ ( 𝑆 “ 𝐷 ) ) = ( ∪ ( 𝑆 “ ( 𝐶 ∖ { 𝑋 } ) ) ∪ ∪ ( 𝑆 “ 𝐷 ) ) | |
| 85 | 83 84 | eqtrdi | ⊢ ( ( 𝜑 ∧ 𝑋 ∈ 𝐶 ) → ∪ ( 𝑆 “ ( 𝐼 ∖ { 𝑋 } ) ) = ( ∪ ( 𝑆 “ ( 𝐶 ∖ { 𝑋 } ) ) ∪ ∪ ( 𝑆 “ 𝐷 ) ) ) |
| 86 | difss | ⊢ ( 𝐶 ∖ { 𝑋 } ) ⊆ 𝐶 | |
| 87 | imass2 | ⊢ ( ( 𝐶 ∖ { 𝑋 } ) ⊆ 𝐶 → ( 𝑆 “ ( 𝐶 ∖ { 𝑋 } ) ) ⊆ ( 𝑆 “ 𝐶 ) ) | |
| 88 | uniss | ⊢ ( ( 𝑆 “ ( 𝐶 ∖ { 𝑋 } ) ) ⊆ ( 𝑆 “ 𝐶 ) → ∪ ( 𝑆 “ ( 𝐶 ∖ { 𝑋 } ) ) ⊆ ∪ ( 𝑆 “ 𝐶 ) ) | |
| 89 | 86 87 88 | mp2b | ⊢ ∪ ( 𝑆 “ ( 𝐶 ∖ { 𝑋 } ) ) ⊆ ∪ ( 𝑆 “ 𝐶 ) |
| 90 | imassrn | ⊢ ( 𝑆 “ 𝐶 ) ⊆ ran 𝑆 | |
| 91 | 1 | frnd | ⊢ ( 𝜑 → ran 𝑆 ⊆ ( SubGrp ‘ 𝐺 ) ) |
| 92 | 91 | adantr | ⊢ ( ( 𝜑 ∧ 𝑋 ∈ 𝐶 ) → ran 𝑆 ⊆ ( SubGrp ‘ 𝐺 ) ) |
| 93 | mresspw | ⊢ ( ( SubGrp ‘ 𝐺 ) ∈ ( Moore ‘ ( Base ‘ 𝐺 ) ) → ( SubGrp ‘ 𝐺 ) ⊆ 𝒫 ( Base ‘ 𝐺 ) ) | |
| 94 | 64 93 | syl | ⊢ ( ( 𝜑 ∧ 𝑋 ∈ 𝐶 ) → ( SubGrp ‘ 𝐺 ) ⊆ 𝒫 ( Base ‘ 𝐺 ) ) |
| 95 | 92 94 | sstrd | ⊢ ( ( 𝜑 ∧ 𝑋 ∈ 𝐶 ) → ran 𝑆 ⊆ 𝒫 ( Base ‘ 𝐺 ) ) |
| 96 | 90 95 | sstrid | ⊢ ( ( 𝜑 ∧ 𝑋 ∈ 𝐶 ) → ( 𝑆 “ 𝐶 ) ⊆ 𝒫 ( Base ‘ 𝐺 ) ) |
| 97 | sspwuni | ⊢ ( ( 𝑆 “ 𝐶 ) ⊆ 𝒫 ( Base ‘ 𝐺 ) ↔ ∪ ( 𝑆 “ 𝐶 ) ⊆ ( Base ‘ 𝐺 ) ) | |
| 98 | 96 97 | sylib | ⊢ ( ( 𝜑 ∧ 𝑋 ∈ 𝐶 ) → ∪ ( 𝑆 “ 𝐶 ) ⊆ ( Base ‘ 𝐺 ) ) |
| 99 | 89 98 | sstrid | ⊢ ( ( 𝜑 ∧ 𝑋 ∈ 𝐶 ) → ∪ ( 𝑆 “ ( 𝐶 ∖ { 𝑋 } ) ) ⊆ ( Base ‘ 𝐺 ) ) |
| 100 | 64 10 99 | mrcssidd | ⊢ ( ( 𝜑 ∧ 𝑋 ∈ 𝐶 ) → ∪ ( 𝑆 “ ( 𝐶 ∖ { 𝑋 } ) ) ⊆ ( 𝐾 ‘ ∪ ( 𝑆 “ ( 𝐶 ∖ { 𝑋 } ) ) ) ) |
| 101 | imassrn | ⊢ ( 𝑆 “ 𝐷 ) ⊆ ran 𝑆 | |
| 102 | 101 95 | sstrid | ⊢ ( ( 𝜑 ∧ 𝑋 ∈ 𝐶 ) → ( 𝑆 “ 𝐷 ) ⊆ 𝒫 ( Base ‘ 𝐺 ) ) |
| 103 | sspwuni | ⊢ ( ( 𝑆 “ 𝐷 ) ⊆ 𝒫 ( Base ‘ 𝐺 ) ↔ ∪ ( 𝑆 “ 𝐷 ) ⊆ ( Base ‘ 𝐺 ) ) | |
| 104 | 102 103 | sylib | ⊢ ( ( 𝜑 ∧ 𝑋 ∈ 𝐶 ) → ∪ ( 𝑆 “ 𝐷 ) ⊆ ( Base ‘ 𝐺 ) ) |
| 105 | 64 10 104 | mrcssidd | ⊢ ( ( 𝜑 ∧ 𝑋 ∈ 𝐶 ) → ∪ ( 𝑆 “ 𝐷 ) ⊆ ( 𝐾 ‘ ∪ ( 𝑆 “ 𝐷 ) ) ) |
| 106 | 10 | dprdspan | ⊢ ( 𝐺 dom DProd ( 𝑆 ↾ 𝐷 ) → ( 𝐺 DProd ( 𝑆 ↾ 𝐷 ) ) = ( 𝐾 ‘ ∪ ran ( 𝑆 ↾ 𝐷 ) ) ) |
| 107 | 7 106 | syl | ⊢ ( 𝜑 → ( 𝐺 DProd ( 𝑆 ↾ 𝐷 ) ) = ( 𝐾 ‘ ∪ ran ( 𝑆 ↾ 𝐷 ) ) ) |
| 108 | df-ima | ⊢ ( 𝑆 “ 𝐷 ) = ran ( 𝑆 ↾ 𝐷 ) | |
| 109 | 108 | unieqi | ⊢ ∪ ( 𝑆 “ 𝐷 ) = ∪ ran ( 𝑆 ↾ 𝐷 ) |
| 110 | 109 | fveq2i | ⊢ ( 𝐾 ‘ ∪ ( 𝑆 “ 𝐷 ) ) = ( 𝐾 ‘ ∪ ran ( 𝑆 ↾ 𝐷 ) ) |
| 111 | 107 110 | eqtr4di | ⊢ ( 𝜑 → ( 𝐺 DProd ( 𝑆 ↾ 𝐷 ) ) = ( 𝐾 ‘ ∪ ( 𝑆 “ 𝐷 ) ) ) |
| 112 | 111 | adantr | ⊢ ( ( 𝜑 ∧ 𝑋 ∈ 𝐶 ) → ( 𝐺 DProd ( 𝑆 ↾ 𝐷 ) ) = ( 𝐾 ‘ ∪ ( 𝑆 “ 𝐷 ) ) ) |
| 113 | 105 112 | sseqtrrd | ⊢ ( ( 𝜑 ∧ 𝑋 ∈ 𝐶 ) → ∪ ( 𝑆 “ 𝐷 ) ⊆ ( 𝐺 DProd ( 𝑆 ↾ 𝐷 ) ) ) |
| 114 | unss12 | ⊢ ( ( ∪ ( 𝑆 “ ( 𝐶 ∖ { 𝑋 } ) ) ⊆ ( 𝐾 ‘ ∪ ( 𝑆 “ ( 𝐶 ∖ { 𝑋 } ) ) ) ∧ ∪ ( 𝑆 “ 𝐷 ) ⊆ ( 𝐺 DProd ( 𝑆 ↾ 𝐷 ) ) ) → ( ∪ ( 𝑆 “ ( 𝐶 ∖ { 𝑋 } ) ) ∪ ∪ ( 𝑆 “ 𝐷 ) ) ⊆ ( ( 𝐾 ‘ ∪ ( 𝑆 “ ( 𝐶 ∖ { 𝑋 } ) ) ) ∪ ( 𝐺 DProd ( 𝑆 ↾ 𝐷 ) ) ) ) | |
| 115 | 100 113 114 | syl2anc | ⊢ ( ( 𝜑 ∧ 𝑋 ∈ 𝐶 ) → ( ∪ ( 𝑆 “ ( 𝐶 ∖ { 𝑋 } ) ) ∪ ∪ ( 𝑆 “ 𝐷 ) ) ⊆ ( ( 𝐾 ‘ ∪ ( 𝑆 “ ( 𝐶 ∖ { 𝑋 } ) ) ) ∪ ( 𝐺 DProd ( 𝑆 ↾ 𝐷 ) ) ) ) |
| 116 | 10 | mrccl | ⊢ ( ( ( SubGrp ‘ 𝐺 ) ∈ ( Moore ‘ ( Base ‘ 𝐺 ) ) ∧ ∪ ( 𝑆 “ ( 𝐶 ∖ { 𝑋 } ) ) ⊆ ( Base ‘ 𝐺 ) ) → ( 𝐾 ‘ ∪ ( 𝑆 “ ( 𝐶 ∖ { 𝑋 } ) ) ) ∈ ( SubGrp ‘ 𝐺 ) ) |
| 117 | 64 99 116 | syl2anc | ⊢ ( ( 𝜑 ∧ 𝑋 ∈ 𝐶 ) → ( 𝐾 ‘ ∪ ( 𝑆 “ ( 𝐶 ∖ { 𝑋 } ) ) ) ∈ ( SubGrp ‘ 𝐺 ) ) |
| 118 | dprdsubg | ⊢ ( 𝐺 dom DProd ( 𝑆 ↾ 𝐷 ) → ( 𝐺 DProd ( 𝑆 ↾ 𝐷 ) ) ∈ ( SubGrp ‘ 𝐺 ) ) | |
| 119 | 7 118 | syl | ⊢ ( 𝜑 → ( 𝐺 DProd ( 𝑆 ↾ 𝐷 ) ) ∈ ( SubGrp ‘ 𝐺 ) ) |
| 120 | 119 | adantr | ⊢ ( ( 𝜑 ∧ 𝑋 ∈ 𝐶 ) → ( 𝐺 DProd ( 𝑆 ↾ 𝐷 ) ) ∈ ( SubGrp ‘ 𝐺 ) ) |
| 121 | eqid | ⊢ ( LSSum ‘ 𝐺 ) = ( LSSum ‘ 𝐺 ) | |
| 122 | 121 | lsmunss | ⊢ ( ( ( 𝐾 ‘ ∪ ( 𝑆 “ ( 𝐶 ∖ { 𝑋 } ) ) ) ∈ ( SubGrp ‘ 𝐺 ) ∧ ( 𝐺 DProd ( 𝑆 ↾ 𝐷 ) ) ∈ ( SubGrp ‘ 𝐺 ) ) → ( ( 𝐾 ‘ ∪ ( 𝑆 “ ( 𝐶 ∖ { 𝑋 } ) ) ) ∪ ( 𝐺 DProd ( 𝑆 ↾ 𝐷 ) ) ) ⊆ ( ( 𝐾 ‘ ∪ ( 𝑆 “ ( 𝐶 ∖ { 𝑋 } ) ) ) ( LSSum ‘ 𝐺 ) ( 𝐺 DProd ( 𝑆 ↾ 𝐷 ) ) ) ) |
| 123 | 117 120 122 | syl2anc | ⊢ ( ( 𝜑 ∧ 𝑋 ∈ 𝐶 ) → ( ( 𝐾 ‘ ∪ ( 𝑆 “ ( 𝐶 ∖ { 𝑋 } ) ) ) ∪ ( 𝐺 DProd ( 𝑆 ↾ 𝐷 ) ) ) ⊆ ( ( 𝐾 ‘ ∪ ( 𝑆 “ ( 𝐶 ∖ { 𝑋 } ) ) ) ( LSSum ‘ 𝐺 ) ( 𝐺 DProd ( 𝑆 ↾ 𝐷 ) ) ) ) |
| 124 | 115 123 | sstrd | ⊢ ( ( 𝜑 ∧ 𝑋 ∈ 𝐶 ) → ( ∪ ( 𝑆 “ ( 𝐶 ∖ { 𝑋 } ) ) ∪ ∪ ( 𝑆 “ 𝐷 ) ) ⊆ ( ( 𝐾 ‘ ∪ ( 𝑆 “ ( 𝐶 ∖ { 𝑋 } ) ) ) ( LSSum ‘ 𝐺 ) ( 𝐺 DProd ( 𝑆 ↾ 𝐷 ) ) ) ) |
| 125 | 85 124 | eqsstrd | ⊢ ( ( 𝜑 ∧ 𝑋 ∈ 𝐶 ) → ∪ ( 𝑆 “ ( 𝐼 ∖ { 𝑋 } ) ) ⊆ ( ( 𝐾 ‘ ∪ ( 𝑆 “ ( 𝐶 ∖ { 𝑋 } ) ) ) ( LSSum ‘ 𝐺 ) ( 𝐺 DProd ( 𝑆 ↾ 𝐷 ) ) ) ) |
| 126 | 89 | a1i | ⊢ ( ( 𝜑 ∧ 𝑋 ∈ 𝐶 ) → ∪ ( 𝑆 “ ( 𝐶 ∖ { 𝑋 } ) ) ⊆ ∪ ( 𝑆 “ 𝐶 ) ) |
| 127 | 64 10 126 98 | mrcssd | ⊢ ( ( 𝜑 ∧ 𝑋 ∈ 𝐶 ) → ( 𝐾 ‘ ∪ ( 𝑆 “ ( 𝐶 ∖ { 𝑋 } ) ) ) ⊆ ( 𝐾 ‘ ∪ ( 𝑆 “ 𝐶 ) ) ) |
| 128 | 10 | dprdspan | ⊢ ( 𝐺 dom DProd ( 𝑆 ↾ 𝐶 ) → ( 𝐺 DProd ( 𝑆 ↾ 𝐶 ) ) = ( 𝐾 ‘ ∪ ran ( 𝑆 ↾ 𝐶 ) ) ) |
| 129 | 6 128 | syl | ⊢ ( 𝜑 → ( 𝐺 DProd ( 𝑆 ↾ 𝐶 ) ) = ( 𝐾 ‘ ∪ ran ( 𝑆 ↾ 𝐶 ) ) ) |
| 130 | df-ima | ⊢ ( 𝑆 “ 𝐶 ) = ran ( 𝑆 ↾ 𝐶 ) | |
| 131 | 130 | unieqi | ⊢ ∪ ( 𝑆 “ 𝐶 ) = ∪ ran ( 𝑆 ↾ 𝐶 ) |
| 132 | 131 | fveq2i | ⊢ ( 𝐾 ‘ ∪ ( 𝑆 “ 𝐶 ) ) = ( 𝐾 ‘ ∪ ran ( 𝑆 ↾ 𝐶 ) ) |
| 133 | 129 132 | eqtr4di | ⊢ ( 𝜑 → ( 𝐺 DProd ( 𝑆 ↾ 𝐶 ) ) = ( 𝐾 ‘ ∪ ( 𝑆 “ 𝐶 ) ) ) |
| 134 | 133 | adantr | ⊢ ( ( 𝜑 ∧ 𝑋 ∈ 𝐶 ) → ( 𝐺 DProd ( 𝑆 ↾ 𝐶 ) ) = ( 𝐾 ‘ ∪ ( 𝑆 “ 𝐶 ) ) ) |
| 135 | 127 134 | sseqtrrd | ⊢ ( ( 𝜑 ∧ 𝑋 ∈ 𝐶 ) → ( 𝐾 ‘ ∪ ( 𝑆 “ ( 𝐶 ∖ { 𝑋 } ) ) ) ⊆ ( 𝐺 DProd ( 𝑆 ↾ 𝐶 ) ) ) |
| 136 | 8 | adantr | ⊢ ( ( 𝜑 ∧ 𝑋 ∈ 𝐶 ) → ( 𝐺 DProd ( 𝑆 ↾ 𝐶 ) ) ⊆ ( 𝑍 ‘ ( 𝐺 DProd ( 𝑆 ↾ 𝐷 ) ) ) ) |
| 137 | 135 136 | sstrd | ⊢ ( ( 𝜑 ∧ 𝑋 ∈ 𝐶 ) → ( 𝐾 ‘ ∪ ( 𝑆 “ ( 𝐶 ∖ { 𝑋 } ) ) ) ⊆ ( 𝑍 ‘ ( 𝐺 DProd ( 𝑆 ↾ 𝐷 ) ) ) ) |
| 138 | 121 4 | lsmsubg | ⊢ ( ( ( 𝐾 ‘ ∪ ( 𝑆 “ ( 𝐶 ∖ { 𝑋 } ) ) ) ∈ ( SubGrp ‘ 𝐺 ) ∧ ( 𝐺 DProd ( 𝑆 ↾ 𝐷 ) ) ∈ ( SubGrp ‘ 𝐺 ) ∧ ( 𝐾 ‘ ∪ ( 𝑆 “ ( 𝐶 ∖ { 𝑋 } ) ) ) ⊆ ( 𝑍 ‘ ( 𝐺 DProd ( 𝑆 ↾ 𝐷 ) ) ) ) → ( ( 𝐾 ‘ ∪ ( 𝑆 “ ( 𝐶 ∖ { 𝑋 } ) ) ) ( LSSum ‘ 𝐺 ) ( 𝐺 DProd ( 𝑆 ↾ 𝐷 ) ) ) ∈ ( SubGrp ‘ 𝐺 ) ) |
| 139 | 117 120 137 138 | syl3anc | ⊢ ( ( 𝜑 ∧ 𝑋 ∈ 𝐶 ) → ( ( 𝐾 ‘ ∪ ( 𝑆 “ ( 𝐶 ∖ { 𝑋 } ) ) ) ( LSSum ‘ 𝐺 ) ( 𝐺 DProd ( 𝑆 ↾ 𝐷 ) ) ) ∈ ( SubGrp ‘ 𝐺 ) ) |
| 140 | 10 | mrcsscl | ⊢ ( ( ( SubGrp ‘ 𝐺 ) ∈ ( Moore ‘ ( Base ‘ 𝐺 ) ) ∧ ∪ ( 𝑆 “ ( 𝐼 ∖ { 𝑋 } ) ) ⊆ ( ( 𝐾 ‘ ∪ ( 𝑆 “ ( 𝐶 ∖ { 𝑋 } ) ) ) ( LSSum ‘ 𝐺 ) ( 𝐺 DProd ( 𝑆 ↾ 𝐷 ) ) ) ∧ ( ( 𝐾 ‘ ∪ ( 𝑆 “ ( 𝐶 ∖ { 𝑋 } ) ) ) ( LSSum ‘ 𝐺 ) ( 𝐺 DProd ( 𝑆 ↾ 𝐷 ) ) ) ∈ ( SubGrp ‘ 𝐺 ) ) → ( 𝐾 ‘ ∪ ( 𝑆 “ ( 𝐼 ∖ { 𝑋 } ) ) ) ⊆ ( ( 𝐾 ‘ ∪ ( 𝑆 “ ( 𝐶 ∖ { 𝑋 } ) ) ) ( LSSum ‘ 𝐺 ) ( 𝐺 DProd ( 𝑆 ↾ 𝐷 ) ) ) ) |
| 141 | 64 125 139 140 | syl3anc | ⊢ ( ( 𝜑 ∧ 𝑋 ∈ 𝐶 ) → ( 𝐾 ‘ ∪ ( 𝑆 “ ( 𝐼 ∖ { 𝑋 } ) ) ) ⊆ ( ( 𝐾 ‘ ∪ ( 𝑆 “ ( 𝐶 ∖ { 𝑋 } ) ) ) ( LSSum ‘ 𝐺 ) ( 𝐺 DProd ( 𝑆 ↾ 𝐷 ) ) ) ) |
| 142 | sslin | ⊢ ( ( 𝐾 ‘ ∪ ( 𝑆 “ ( 𝐼 ∖ { 𝑋 } ) ) ) ⊆ ( ( 𝐾 ‘ ∪ ( 𝑆 “ ( 𝐶 ∖ { 𝑋 } ) ) ) ( LSSum ‘ 𝐺 ) ( 𝐺 DProd ( 𝑆 ↾ 𝐷 ) ) ) → ( ( 𝑆 ‘ 𝑋 ) ∩ ( 𝐾 ‘ ∪ ( 𝑆 “ ( 𝐼 ∖ { 𝑋 } ) ) ) ) ⊆ ( ( 𝑆 ‘ 𝑋 ) ∩ ( ( 𝐾 ‘ ∪ ( 𝑆 “ ( 𝐶 ∖ { 𝑋 } ) ) ) ( LSSum ‘ 𝐺 ) ( 𝐺 DProd ( 𝑆 ↾ 𝐷 ) ) ) ) ) | |
| 143 | 141 142 | syl | ⊢ ( ( 𝜑 ∧ 𝑋 ∈ 𝐶 ) → ( ( 𝑆 ‘ 𝑋 ) ∩ ( 𝐾 ‘ ∪ ( 𝑆 “ ( 𝐼 ∖ { 𝑋 } ) ) ) ) ⊆ ( ( 𝑆 ‘ 𝑋 ) ∩ ( ( 𝐾 ‘ ∪ ( 𝑆 “ ( 𝐶 ∖ { 𝑋 } ) ) ) ( LSSum ‘ 𝐺 ) ( 𝐺 DProd ( 𝑆 ↾ 𝐷 ) ) ) ) ) |
| 144 | 17 | sselda | ⊢ ( ( 𝜑 ∧ 𝑋 ∈ 𝐶 ) → 𝑋 ∈ 𝐼 ) |
| 145 | 1 | ffvelcdmda | ⊢ ( ( 𝜑 ∧ 𝑋 ∈ 𝐼 ) → ( 𝑆 ‘ 𝑋 ) ∈ ( SubGrp ‘ 𝐺 ) ) |
| 146 | 144 145 | syldan | ⊢ ( ( 𝜑 ∧ 𝑋 ∈ 𝐶 ) → ( 𝑆 ‘ 𝑋 ) ∈ ( SubGrp ‘ 𝐺 ) ) |
| 147 | 25 | adantl | ⊢ ( ( 𝜑 ∧ 𝑋 ∈ 𝐶 ) → ( ( 𝑆 ↾ 𝐶 ) ‘ 𝑋 ) = ( 𝑆 ‘ 𝑋 ) ) |
| 148 | 6 | adantr | ⊢ ( ( 𝜑 ∧ 𝑋 ∈ 𝐶 ) → 𝐺 dom DProd ( 𝑆 ↾ 𝐶 ) ) |
| 149 | 19 | adantr | ⊢ ( ( 𝜑 ∧ 𝑋 ∈ 𝐶 ) → dom ( 𝑆 ↾ 𝐶 ) = 𝐶 ) |
| 150 | 148 149 67 | dprdub | ⊢ ( ( 𝜑 ∧ 𝑋 ∈ 𝐶 ) → ( ( 𝑆 ↾ 𝐶 ) ‘ 𝑋 ) ⊆ ( 𝐺 DProd ( 𝑆 ↾ 𝐶 ) ) ) |
| 151 | 147 150 | eqsstrrd | ⊢ ( ( 𝜑 ∧ 𝑋 ∈ 𝐶 ) → ( 𝑆 ‘ 𝑋 ) ⊆ ( 𝐺 DProd ( 𝑆 ↾ 𝐶 ) ) ) |
| 152 | dprdsubg | ⊢ ( 𝐺 dom DProd ( 𝑆 ↾ 𝐶 ) → ( 𝐺 DProd ( 𝑆 ↾ 𝐶 ) ) ∈ ( SubGrp ‘ 𝐺 ) ) | |
| 153 | 6 152 | syl | ⊢ ( 𝜑 → ( 𝐺 DProd ( 𝑆 ↾ 𝐶 ) ) ∈ ( SubGrp ‘ 𝐺 ) ) |
| 154 | 153 | adantr | ⊢ ( ( 𝜑 ∧ 𝑋 ∈ 𝐶 ) → ( 𝐺 DProd ( 𝑆 ↾ 𝐶 ) ) ∈ ( SubGrp ‘ 𝐺 ) ) |
| 155 | 121 | lsmlub | ⊢ ( ( ( 𝑆 ‘ 𝑋 ) ∈ ( SubGrp ‘ 𝐺 ) ∧ ( 𝐾 ‘ ∪ ( 𝑆 “ ( 𝐶 ∖ { 𝑋 } ) ) ) ∈ ( SubGrp ‘ 𝐺 ) ∧ ( 𝐺 DProd ( 𝑆 ↾ 𝐶 ) ) ∈ ( SubGrp ‘ 𝐺 ) ) → ( ( ( 𝑆 ‘ 𝑋 ) ⊆ ( 𝐺 DProd ( 𝑆 ↾ 𝐶 ) ) ∧ ( 𝐾 ‘ ∪ ( 𝑆 “ ( 𝐶 ∖ { 𝑋 } ) ) ) ⊆ ( 𝐺 DProd ( 𝑆 ↾ 𝐶 ) ) ) ↔ ( ( 𝑆 ‘ 𝑋 ) ( LSSum ‘ 𝐺 ) ( 𝐾 ‘ ∪ ( 𝑆 “ ( 𝐶 ∖ { 𝑋 } ) ) ) ) ⊆ ( 𝐺 DProd ( 𝑆 ↾ 𝐶 ) ) ) ) |
| 156 | 146 117 154 155 | syl3anc | ⊢ ( ( 𝜑 ∧ 𝑋 ∈ 𝐶 ) → ( ( ( 𝑆 ‘ 𝑋 ) ⊆ ( 𝐺 DProd ( 𝑆 ↾ 𝐶 ) ) ∧ ( 𝐾 ‘ ∪ ( 𝑆 “ ( 𝐶 ∖ { 𝑋 } ) ) ) ⊆ ( 𝐺 DProd ( 𝑆 ↾ 𝐶 ) ) ) ↔ ( ( 𝑆 ‘ 𝑋 ) ( LSSum ‘ 𝐺 ) ( 𝐾 ‘ ∪ ( 𝑆 “ ( 𝐶 ∖ { 𝑋 } ) ) ) ) ⊆ ( 𝐺 DProd ( 𝑆 ↾ 𝐶 ) ) ) ) |
| 157 | 151 135 156 | mpbi2and | ⊢ ( ( 𝜑 ∧ 𝑋 ∈ 𝐶 ) → ( ( 𝑆 ‘ 𝑋 ) ( LSSum ‘ 𝐺 ) ( 𝐾 ‘ ∪ ( 𝑆 “ ( 𝐶 ∖ { 𝑋 } ) ) ) ) ⊆ ( 𝐺 DProd ( 𝑆 ↾ 𝐶 ) ) ) |
| 158 | 157 | ssrind | ⊢ ( ( 𝜑 ∧ 𝑋 ∈ 𝐶 ) → ( ( ( 𝑆 ‘ 𝑋 ) ( LSSum ‘ 𝐺 ) ( 𝐾 ‘ ∪ ( 𝑆 “ ( 𝐶 ∖ { 𝑋 } ) ) ) ) ∩ ( 𝐺 DProd ( 𝑆 ↾ 𝐷 ) ) ) ⊆ ( ( 𝐺 DProd ( 𝑆 ↾ 𝐶 ) ) ∩ ( 𝐺 DProd ( 𝑆 ↾ 𝐷 ) ) ) ) |
| 159 | 9 | adantr | ⊢ ( ( 𝜑 ∧ 𝑋 ∈ 𝐶 ) → ( ( 𝐺 DProd ( 𝑆 ↾ 𝐶 ) ) ∩ ( 𝐺 DProd ( 𝑆 ↾ 𝐷 ) ) ) = { 0 } ) |
| 160 | 158 159 | sseqtrd | ⊢ ( ( 𝜑 ∧ 𝑋 ∈ 𝐶 ) → ( ( ( 𝑆 ‘ 𝑋 ) ( LSSum ‘ 𝐺 ) ( 𝐾 ‘ ∪ ( 𝑆 “ ( 𝐶 ∖ { 𝑋 } ) ) ) ) ∩ ( 𝐺 DProd ( 𝑆 ↾ 𝐷 ) ) ) ⊆ { 0 } ) |
| 161 | 121 | lsmub1 | ⊢ ( ( ( 𝑆 ‘ 𝑋 ) ∈ ( SubGrp ‘ 𝐺 ) ∧ ( 𝐾 ‘ ∪ ( 𝑆 “ ( 𝐶 ∖ { 𝑋 } ) ) ) ∈ ( SubGrp ‘ 𝐺 ) ) → ( 𝑆 ‘ 𝑋 ) ⊆ ( ( 𝑆 ‘ 𝑋 ) ( LSSum ‘ 𝐺 ) ( 𝐾 ‘ ∪ ( 𝑆 “ ( 𝐶 ∖ { 𝑋 } ) ) ) ) ) |
| 162 | 146 117 161 | syl2anc | ⊢ ( ( 𝜑 ∧ 𝑋 ∈ 𝐶 ) → ( 𝑆 ‘ 𝑋 ) ⊆ ( ( 𝑆 ‘ 𝑋 ) ( LSSum ‘ 𝐺 ) ( 𝐾 ‘ ∪ ( 𝑆 “ ( 𝐶 ∖ { 𝑋 } ) ) ) ) ) |
| 163 | 5 | subg0cl | ⊢ ( ( 𝑆 ‘ 𝑋 ) ∈ ( SubGrp ‘ 𝐺 ) → 0 ∈ ( 𝑆 ‘ 𝑋 ) ) |
| 164 | 146 163 | syl | ⊢ ( ( 𝜑 ∧ 𝑋 ∈ 𝐶 ) → 0 ∈ ( 𝑆 ‘ 𝑋 ) ) |
| 165 | 162 164 | sseldd | ⊢ ( ( 𝜑 ∧ 𝑋 ∈ 𝐶 ) → 0 ∈ ( ( 𝑆 ‘ 𝑋 ) ( LSSum ‘ 𝐺 ) ( 𝐾 ‘ ∪ ( 𝑆 “ ( 𝐶 ∖ { 𝑋 } ) ) ) ) ) |
| 166 | 5 | subg0cl | ⊢ ( ( 𝐺 DProd ( 𝑆 ↾ 𝐷 ) ) ∈ ( SubGrp ‘ 𝐺 ) → 0 ∈ ( 𝐺 DProd ( 𝑆 ↾ 𝐷 ) ) ) |
| 167 | 120 166 | syl | ⊢ ( ( 𝜑 ∧ 𝑋 ∈ 𝐶 ) → 0 ∈ ( 𝐺 DProd ( 𝑆 ↾ 𝐷 ) ) ) |
| 168 | 165 167 | elind | ⊢ ( ( 𝜑 ∧ 𝑋 ∈ 𝐶 ) → 0 ∈ ( ( ( 𝑆 ‘ 𝑋 ) ( LSSum ‘ 𝐺 ) ( 𝐾 ‘ ∪ ( 𝑆 “ ( 𝐶 ∖ { 𝑋 } ) ) ) ) ∩ ( 𝐺 DProd ( 𝑆 ↾ 𝐷 ) ) ) ) |
| 169 | 168 | snssd | ⊢ ( ( 𝜑 ∧ 𝑋 ∈ 𝐶 ) → { 0 } ⊆ ( ( ( 𝑆 ‘ 𝑋 ) ( LSSum ‘ 𝐺 ) ( 𝐾 ‘ ∪ ( 𝑆 “ ( 𝐶 ∖ { 𝑋 } ) ) ) ) ∩ ( 𝐺 DProd ( 𝑆 ↾ 𝐷 ) ) ) ) |
| 170 | 160 169 | eqssd | ⊢ ( ( 𝜑 ∧ 𝑋 ∈ 𝐶 ) → ( ( ( 𝑆 ‘ 𝑋 ) ( LSSum ‘ 𝐺 ) ( 𝐾 ‘ ∪ ( 𝑆 “ ( 𝐶 ∖ { 𝑋 } ) ) ) ) ∩ ( 𝐺 DProd ( 𝑆 ↾ 𝐷 ) ) ) = { 0 } ) |
| 171 | resima2 | ⊢ ( ( 𝐶 ∖ { 𝑋 } ) ⊆ 𝐶 → ( ( 𝑆 ↾ 𝐶 ) “ ( 𝐶 ∖ { 𝑋 } ) ) = ( 𝑆 “ ( 𝐶 ∖ { 𝑋 } ) ) ) | |
| 172 | 86 171 | mp1i | ⊢ ( ( 𝜑 ∧ 𝑋 ∈ 𝐶 ) → ( ( 𝑆 ↾ 𝐶 ) “ ( 𝐶 ∖ { 𝑋 } ) ) = ( 𝑆 “ ( 𝐶 ∖ { 𝑋 } ) ) ) |
| 173 | 172 | unieqd | ⊢ ( ( 𝜑 ∧ 𝑋 ∈ 𝐶 ) → ∪ ( ( 𝑆 ↾ 𝐶 ) “ ( 𝐶 ∖ { 𝑋 } ) ) = ∪ ( 𝑆 “ ( 𝐶 ∖ { 𝑋 } ) ) ) |
| 174 | 173 | fveq2d | ⊢ ( ( 𝜑 ∧ 𝑋 ∈ 𝐶 ) → ( 𝐾 ‘ ∪ ( ( 𝑆 ↾ 𝐶 ) “ ( 𝐶 ∖ { 𝑋 } ) ) ) = ( 𝐾 ‘ ∪ ( 𝑆 “ ( 𝐶 ∖ { 𝑋 } ) ) ) ) |
| 175 | 147 174 | ineq12d | ⊢ ( ( 𝜑 ∧ 𝑋 ∈ 𝐶 ) → ( ( ( 𝑆 ↾ 𝐶 ) ‘ 𝑋 ) ∩ ( 𝐾 ‘ ∪ ( ( 𝑆 ↾ 𝐶 ) “ ( 𝐶 ∖ { 𝑋 } ) ) ) ) = ( ( 𝑆 ‘ 𝑋 ) ∩ ( 𝐾 ‘ ∪ ( 𝑆 “ ( 𝐶 ∖ { 𝑋 } ) ) ) ) ) |
| 176 | 148 149 67 5 10 | dprddisj | ⊢ ( ( 𝜑 ∧ 𝑋 ∈ 𝐶 ) → ( ( ( 𝑆 ↾ 𝐶 ) ‘ 𝑋 ) ∩ ( 𝐾 ‘ ∪ ( ( 𝑆 ↾ 𝐶 ) “ ( 𝐶 ∖ { 𝑋 } ) ) ) ) = { 0 } ) |
| 177 | 175 176 | eqtr3d | ⊢ ( ( 𝜑 ∧ 𝑋 ∈ 𝐶 ) → ( ( 𝑆 ‘ 𝑋 ) ∩ ( 𝐾 ‘ ∪ ( 𝑆 “ ( 𝐶 ∖ { 𝑋 } ) ) ) ) = { 0 } ) |
| 178 | 1 | adantr | ⊢ ( ( 𝜑 ∧ 𝑋 ∈ 𝐶 ) → 𝑆 : 𝐼 ⟶ ( SubGrp ‘ 𝐺 ) ) |
| 179 | ffun | ⊢ ( 𝑆 : 𝐼 ⟶ ( SubGrp ‘ 𝐺 ) → Fun 𝑆 ) | |
| 180 | funiunfv | ⊢ ( Fun 𝑆 → ∪ 𝑦 ∈ ( 𝐶 ∖ { 𝑋 } ) ( 𝑆 ‘ 𝑦 ) = ∪ ( 𝑆 “ ( 𝐶 ∖ { 𝑋 } ) ) ) | |
| 181 | 178 179 180 | 3syl | ⊢ ( ( 𝜑 ∧ 𝑋 ∈ 𝐶 ) → ∪ 𝑦 ∈ ( 𝐶 ∖ { 𝑋 } ) ( 𝑆 ‘ 𝑦 ) = ∪ ( 𝑆 “ ( 𝐶 ∖ { 𝑋 } ) ) ) |
| 182 | 6 | ad2antrr | ⊢ ( ( ( 𝜑 ∧ 𝑋 ∈ 𝐶 ) ∧ 𝑦 ∈ ( 𝐶 ∖ { 𝑋 } ) ) → 𝐺 dom DProd ( 𝑆 ↾ 𝐶 ) ) |
| 183 | 19 | ad2antrr | ⊢ ( ( ( 𝜑 ∧ 𝑋 ∈ 𝐶 ) ∧ 𝑦 ∈ ( 𝐶 ∖ { 𝑋 } ) ) → dom ( 𝑆 ↾ 𝐶 ) = 𝐶 ) |
| 184 | eldifi | ⊢ ( 𝑦 ∈ ( 𝐶 ∖ { 𝑋 } ) → 𝑦 ∈ 𝐶 ) | |
| 185 | 184 | adantl | ⊢ ( ( ( 𝜑 ∧ 𝑋 ∈ 𝐶 ) ∧ 𝑦 ∈ ( 𝐶 ∖ { 𝑋 } ) ) → 𝑦 ∈ 𝐶 ) |
| 186 | simplr | ⊢ ( ( ( 𝜑 ∧ 𝑋 ∈ 𝐶 ) ∧ 𝑦 ∈ ( 𝐶 ∖ { 𝑋 } ) ) → 𝑋 ∈ 𝐶 ) | |
| 187 | eldifsni | ⊢ ( 𝑦 ∈ ( 𝐶 ∖ { 𝑋 } ) → 𝑦 ≠ 𝑋 ) | |
| 188 | 187 | adantl | ⊢ ( ( ( 𝜑 ∧ 𝑋 ∈ 𝐶 ) ∧ 𝑦 ∈ ( 𝐶 ∖ { 𝑋 } ) ) → 𝑦 ≠ 𝑋 ) |
| 189 | 182 183 185 186 188 4 | dprdcntz | ⊢ ( ( ( 𝜑 ∧ 𝑋 ∈ 𝐶 ) ∧ 𝑦 ∈ ( 𝐶 ∖ { 𝑋 } ) ) → ( ( 𝑆 ↾ 𝐶 ) ‘ 𝑦 ) ⊆ ( 𝑍 ‘ ( ( 𝑆 ↾ 𝐶 ) ‘ 𝑋 ) ) ) |
| 190 | 185 | fvresd | ⊢ ( ( ( 𝜑 ∧ 𝑋 ∈ 𝐶 ) ∧ 𝑦 ∈ ( 𝐶 ∖ { 𝑋 } ) ) → ( ( 𝑆 ↾ 𝐶 ) ‘ 𝑦 ) = ( 𝑆 ‘ 𝑦 ) ) |
| 191 | 25 | ad2antlr | ⊢ ( ( ( 𝜑 ∧ 𝑋 ∈ 𝐶 ) ∧ 𝑦 ∈ ( 𝐶 ∖ { 𝑋 } ) ) → ( ( 𝑆 ↾ 𝐶 ) ‘ 𝑋 ) = ( 𝑆 ‘ 𝑋 ) ) |
| 192 | 191 | fveq2d | ⊢ ( ( ( 𝜑 ∧ 𝑋 ∈ 𝐶 ) ∧ 𝑦 ∈ ( 𝐶 ∖ { 𝑋 } ) ) → ( 𝑍 ‘ ( ( 𝑆 ↾ 𝐶 ) ‘ 𝑋 ) ) = ( 𝑍 ‘ ( 𝑆 ‘ 𝑋 ) ) ) |
| 193 | 189 190 192 | 3sstr3d | ⊢ ( ( ( 𝜑 ∧ 𝑋 ∈ 𝐶 ) ∧ 𝑦 ∈ ( 𝐶 ∖ { 𝑋 } ) ) → ( 𝑆 ‘ 𝑦 ) ⊆ ( 𝑍 ‘ ( 𝑆 ‘ 𝑋 ) ) ) |
| 194 | 193 | ralrimiva | ⊢ ( ( 𝜑 ∧ 𝑋 ∈ 𝐶 ) → ∀ 𝑦 ∈ ( 𝐶 ∖ { 𝑋 } ) ( 𝑆 ‘ 𝑦 ) ⊆ ( 𝑍 ‘ ( 𝑆 ‘ 𝑋 ) ) ) |
| 195 | iunss | ⊢ ( ∪ 𝑦 ∈ ( 𝐶 ∖ { 𝑋 } ) ( 𝑆 ‘ 𝑦 ) ⊆ ( 𝑍 ‘ ( 𝑆 ‘ 𝑋 ) ) ↔ ∀ 𝑦 ∈ ( 𝐶 ∖ { 𝑋 } ) ( 𝑆 ‘ 𝑦 ) ⊆ ( 𝑍 ‘ ( 𝑆 ‘ 𝑋 ) ) ) | |
| 196 | 194 195 | sylibr | ⊢ ( ( 𝜑 ∧ 𝑋 ∈ 𝐶 ) → ∪ 𝑦 ∈ ( 𝐶 ∖ { 𝑋 } ) ( 𝑆 ‘ 𝑦 ) ⊆ ( 𝑍 ‘ ( 𝑆 ‘ 𝑋 ) ) ) |
| 197 | 181 196 | eqsstrrd | ⊢ ( ( 𝜑 ∧ 𝑋 ∈ 𝐶 ) → ∪ ( 𝑆 “ ( 𝐶 ∖ { 𝑋 } ) ) ⊆ ( 𝑍 ‘ ( 𝑆 ‘ 𝑋 ) ) ) |
| 198 | 39 | subgss | ⊢ ( ( 𝑆 ‘ 𝑋 ) ∈ ( SubGrp ‘ 𝐺 ) → ( 𝑆 ‘ 𝑋 ) ⊆ ( Base ‘ 𝐺 ) ) |
| 199 | 146 198 | syl | ⊢ ( ( 𝜑 ∧ 𝑋 ∈ 𝐶 ) → ( 𝑆 ‘ 𝑋 ) ⊆ ( Base ‘ 𝐺 ) ) |
| 200 | 39 4 | cntzsubg | ⊢ ( ( 𝐺 ∈ Grp ∧ ( 𝑆 ‘ 𝑋 ) ⊆ ( Base ‘ 𝐺 ) ) → ( 𝑍 ‘ ( 𝑆 ‘ 𝑋 ) ) ∈ ( SubGrp ‘ 𝐺 ) ) |
| 201 | 61 199 200 | syl2anc | ⊢ ( ( 𝜑 ∧ 𝑋 ∈ 𝐶 ) → ( 𝑍 ‘ ( 𝑆 ‘ 𝑋 ) ) ∈ ( SubGrp ‘ 𝐺 ) ) |
| 202 | 10 | mrcsscl | ⊢ ( ( ( SubGrp ‘ 𝐺 ) ∈ ( Moore ‘ ( Base ‘ 𝐺 ) ) ∧ ∪ ( 𝑆 “ ( 𝐶 ∖ { 𝑋 } ) ) ⊆ ( 𝑍 ‘ ( 𝑆 ‘ 𝑋 ) ) ∧ ( 𝑍 ‘ ( 𝑆 ‘ 𝑋 ) ) ∈ ( SubGrp ‘ 𝐺 ) ) → ( 𝐾 ‘ ∪ ( 𝑆 “ ( 𝐶 ∖ { 𝑋 } ) ) ) ⊆ ( 𝑍 ‘ ( 𝑆 ‘ 𝑋 ) ) ) |
| 203 | 64 197 201 202 | syl3anc | ⊢ ( ( 𝜑 ∧ 𝑋 ∈ 𝐶 ) → ( 𝐾 ‘ ∪ ( 𝑆 “ ( 𝐶 ∖ { 𝑋 } ) ) ) ⊆ ( 𝑍 ‘ ( 𝑆 ‘ 𝑋 ) ) ) |
| 204 | 4 117 146 203 | cntzrecd | ⊢ ( ( 𝜑 ∧ 𝑋 ∈ 𝐶 ) → ( 𝑆 ‘ 𝑋 ) ⊆ ( 𝑍 ‘ ( 𝐾 ‘ ∪ ( 𝑆 “ ( 𝐶 ∖ { 𝑋 } ) ) ) ) ) |
| 205 | 121 146 117 120 5 170 177 4 204 | lsmdisj3 | ⊢ ( ( 𝜑 ∧ 𝑋 ∈ 𝐶 ) → ( ( 𝑆 ‘ 𝑋 ) ∩ ( ( 𝐾 ‘ ∪ ( 𝑆 “ ( 𝐶 ∖ { 𝑋 } ) ) ) ( LSSum ‘ 𝐺 ) ( 𝐺 DProd ( 𝑆 ↾ 𝐷 ) ) ) ) = { 0 } ) |
| 206 | 143 205 | sseqtrd | ⊢ ( ( 𝜑 ∧ 𝑋 ∈ 𝐶 ) → ( ( 𝑆 ‘ 𝑋 ) ∩ ( 𝐾 ‘ ∪ ( 𝑆 “ ( 𝐼 ∖ { 𝑋 } ) ) ) ) ⊆ { 0 } ) |
| 207 | 58 206 | jca | ⊢ ( ( 𝜑 ∧ 𝑋 ∈ 𝐶 ) → ( ( 𝑌 ∈ 𝐼 → ( 𝑋 ≠ 𝑌 → ( 𝑆 ‘ 𝑋 ) ⊆ ( 𝑍 ‘ ( 𝑆 ‘ 𝑌 ) ) ) ) ∧ ( ( 𝑆 ‘ 𝑋 ) ∩ ( 𝐾 ‘ ∪ ( 𝑆 “ ( 𝐼 ∖ { 𝑋 } ) ) ) ) ⊆ { 0 } ) ) |