This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The function S is a family having trivial intersections. (Contributed by Mario Carneiro, 25-Apr-2016)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | dprdcntz.1 | ⊢ ( 𝜑 → 𝐺 dom DProd 𝑆 ) | |
| dprdcntz.2 | ⊢ ( 𝜑 → dom 𝑆 = 𝐼 ) | ||
| dprdcntz.3 | ⊢ ( 𝜑 → 𝑋 ∈ 𝐼 ) | ||
| dprddisj.0 | ⊢ 0 = ( 0g ‘ 𝐺 ) | ||
| dprddisj.k | ⊢ 𝐾 = ( mrCls ‘ ( SubGrp ‘ 𝐺 ) ) | ||
| Assertion | dprddisj | ⊢ ( 𝜑 → ( ( 𝑆 ‘ 𝑋 ) ∩ ( 𝐾 ‘ ∪ ( 𝑆 “ ( 𝐼 ∖ { 𝑋 } ) ) ) ) = { 0 } ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dprdcntz.1 | ⊢ ( 𝜑 → 𝐺 dom DProd 𝑆 ) | |
| 2 | dprdcntz.2 | ⊢ ( 𝜑 → dom 𝑆 = 𝐼 ) | |
| 3 | dprdcntz.3 | ⊢ ( 𝜑 → 𝑋 ∈ 𝐼 ) | |
| 4 | dprddisj.0 | ⊢ 0 = ( 0g ‘ 𝐺 ) | |
| 5 | dprddisj.k | ⊢ 𝐾 = ( mrCls ‘ ( SubGrp ‘ 𝐺 ) ) | |
| 6 | fveq2 | ⊢ ( 𝑥 = 𝑋 → ( 𝑆 ‘ 𝑥 ) = ( 𝑆 ‘ 𝑋 ) ) | |
| 7 | sneq | ⊢ ( 𝑥 = 𝑋 → { 𝑥 } = { 𝑋 } ) | |
| 8 | 7 | difeq2d | ⊢ ( 𝑥 = 𝑋 → ( 𝐼 ∖ { 𝑥 } ) = ( 𝐼 ∖ { 𝑋 } ) ) |
| 9 | 8 | imaeq2d | ⊢ ( 𝑥 = 𝑋 → ( 𝑆 “ ( 𝐼 ∖ { 𝑥 } ) ) = ( 𝑆 “ ( 𝐼 ∖ { 𝑋 } ) ) ) |
| 10 | 9 | unieqd | ⊢ ( 𝑥 = 𝑋 → ∪ ( 𝑆 “ ( 𝐼 ∖ { 𝑥 } ) ) = ∪ ( 𝑆 “ ( 𝐼 ∖ { 𝑋 } ) ) ) |
| 11 | 10 | fveq2d | ⊢ ( 𝑥 = 𝑋 → ( 𝐾 ‘ ∪ ( 𝑆 “ ( 𝐼 ∖ { 𝑥 } ) ) ) = ( 𝐾 ‘ ∪ ( 𝑆 “ ( 𝐼 ∖ { 𝑋 } ) ) ) ) |
| 12 | 6 11 | ineq12d | ⊢ ( 𝑥 = 𝑋 → ( ( 𝑆 ‘ 𝑥 ) ∩ ( 𝐾 ‘ ∪ ( 𝑆 “ ( 𝐼 ∖ { 𝑥 } ) ) ) ) = ( ( 𝑆 ‘ 𝑋 ) ∩ ( 𝐾 ‘ ∪ ( 𝑆 “ ( 𝐼 ∖ { 𝑋 } ) ) ) ) ) |
| 13 | 12 | eqeq1d | ⊢ ( 𝑥 = 𝑋 → ( ( ( 𝑆 ‘ 𝑥 ) ∩ ( 𝐾 ‘ ∪ ( 𝑆 “ ( 𝐼 ∖ { 𝑥 } ) ) ) ) = { 0 } ↔ ( ( 𝑆 ‘ 𝑋 ) ∩ ( 𝐾 ‘ ∪ ( 𝑆 “ ( 𝐼 ∖ { 𝑋 } ) ) ) ) = { 0 } ) ) |
| 14 | 1 2 | dprddomcld | ⊢ ( 𝜑 → 𝐼 ∈ V ) |
| 15 | eqid | ⊢ ( Cntz ‘ 𝐺 ) = ( Cntz ‘ 𝐺 ) | |
| 16 | 15 4 5 | dmdprd | ⊢ ( ( 𝐼 ∈ V ∧ dom 𝑆 = 𝐼 ) → ( 𝐺 dom DProd 𝑆 ↔ ( 𝐺 ∈ Grp ∧ 𝑆 : 𝐼 ⟶ ( SubGrp ‘ 𝐺 ) ∧ ∀ 𝑥 ∈ 𝐼 ( ∀ 𝑦 ∈ ( 𝐼 ∖ { 𝑥 } ) ( 𝑆 ‘ 𝑥 ) ⊆ ( ( Cntz ‘ 𝐺 ) ‘ ( 𝑆 ‘ 𝑦 ) ) ∧ ( ( 𝑆 ‘ 𝑥 ) ∩ ( 𝐾 ‘ ∪ ( 𝑆 “ ( 𝐼 ∖ { 𝑥 } ) ) ) ) = { 0 } ) ) ) ) |
| 17 | 14 2 16 | syl2anc | ⊢ ( 𝜑 → ( 𝐺 dom DProd 𝑆 ↔ ( 𝐺 ∈ Grp ∧ 𝑆 : 𝐼 ⟶ ( SubGrp ‘ 𝐺 ) ∧ ∀ 𝑥 ∈ 𝐼 ( ∀ 𝑦 ∈ ( 𝐼 ∖ { 𝑥 } ) ( 𝑆 ‘ 𝑥 ) ⊆ ( ( Cntz ‘ 𝐺 ) ‘ ( 𝑆 ‘ 𝑦 ) ) ∧ ( ( 𝑆 ‘ 𝑥 ) ∩ ( 𝐾 ‘ ∪ ( 𝑆 “ ( 𝐼 ∖ { 𝑥 } ) ) ) ) = { 0 } ) ) ) ) |
| 18 | 1 17 | mpbid | ⊢ ( 𝜑 → ( 𝐺 ∈ Grp ∧ 𝑆 : 𝐼 ⟶ ( SubGrp ‘ 𝐺 ) ∧ ∀ 𝑥 ∈ 𝐼 ( ∀ 𝑦 ∈ ( 𝐼 ∖ { 𝑥 } ) ( 𝑆 ‘ 𝑥 ) ⊆ ( ( Cntz ‘ 𝐺 ) ‘ ( 𝑆 ‘ 𝑦 ) ) ∧ ( ( 𝑆 ‘ 𝑥 ) ∩ ( 𝐾 ‘ ∪ ( 𝑆 “ ( 𝐼 ∖ { 𝑥 } ) ) ) ) = { 0 } ) ) ) |
| 19 | 18 | simp3d | ⊢ ( 𝜑 → ∀ 𝑥 ∈ 𝐼 ( ∀ 𝑦 ∈ ( 𝐼 ∖ { 𝑥 } ) ( 𝑆 ‘ 𝑥 ) ⊆ ( ( Cntz ‘ 𝐺 ) ‘ ( 𝑆 ‘ 𝑦 ) ) ∧ ( ( 𝑆 ‘ 𝑥 ) ∩ ( 𝐾 ‘ ∪ ( 𝑆 “ ( 𝐼 ∖ { 𝑥 } ) ) ) ) = { 0 } ) ) |
| 20 | simpr | ⊢ ( ( ∀ 𝑦 ∈ ( 𝐼 ∖ { 𝑥 } ) ( 𝑆 ‘ 𝑥 ) ⊆ ( ( Cntz ‘ 𝐺 ) ‘ ( 𝑆 ‘ 𝑦 ) ) ∧ ( ( 𝑆 ‘ 𝑥 ) ∩ ( 𝐾 ‘ ∪ ( 𝑆 “ ( 𝐼 ∖ { 𝑥 } ) ) ) ) = { 0 } ) → ( ( 𝑆 ‘ 𝑥 ) ∩ ( 𝐾 ‘ ∪ ( 𝑆 “ ( 𝐼 ∖ { 𝑥 } ) ) ) ) = { 0 } ) | |
| 21 | 20 | ralimi | ⊢ ( ∀ 𝑥 ∈ 𝐼 ( ∀ 𝑦 ∈ ( 𝐼 ∖ { 𝑥 } ) ( 𝑆 ‘ 𝑥 ) ⊆ ( ( Cntz ‘ 𝐺 ) ‘ ( 𝑆 ‘ 𝑦 ) ) ∧ ( ( 𝑆 ‘ 𝑥 ) ∩ ( 𝐾 ‘ ∪ ( 𝑆 “ ( 𝐼 ∖ { 𝑥 } ) ) ) ) = { 0 } ) → ∀ 𝑥 ∈ 𝐼 ( ( 𝑆 ‘ 𝑥 ) ∩ ( 𝐾 ‘ ∪ ( 𝑆 “ ( 𝐼 ∖ { 𝑥 } ) ) ) ) = { 0 } ) |
| 22 | 19 21 | syl | ⊢ ( 𝜑 → ∀ 𝑥 ∈ 𝐼 ( ( 𝑆 ‘ 𝑥 ) ∩ ( 𝐾 ‘ ∪ ( 𝑆 “ ( 𝐼 ∖ { 𝑥 } ) ) ) ) = { 0 } ) |
| 23 | 13 22 3 | rspcdva | ⊢ ( 𝜑 → ( ( 𝑆 ‘ 𝑋 ) ∩ ( 𝐾 ‘ ∪ ( 𝑆 “ ( 𝐼 ∖ { 𝑋 } ) ) ) ) = { 0 } ) |