This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Centralizers in a group are subgroups. (Contributed by Stefan O'Rear, 6-Sep-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | cntzrec.b | ⊢ 𝐵 = ( Base ‘ 𝑀 ) | |
| cntzrec.z | ⊢ 𝑍 = ( Cntz ‘ 𝑀 ) | ||
| Assertion | cntzsubg | ⊢ ( ( 𝑀 ∈ Grp ∧ 𝑆 ⊆ 𝐵 ) → ( 𝑍 ‘ 𝑆 ) ∈ ( SubGrp ‘ 𝑀 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cntzrec.b | ⊢ 𝐵 = ( Base ‘ 𝑀 ) | |
| 2 | cntzrec.z | ⊢ 𝑍 = ( Cntz ‘ 𝑀 ) | |
| 3 | grpmnd | ⊢ ( 𝑀 ∈ Grp → 𝑀 ∈ Mnd ) | |
| 4 | 1 2 | cntzsubm | ⊢ ( ( 𝑀 ∈ Mnd ∧ 𝑆 ⊆ 𝐵 ) → ( 𝑍 ‘ 𝑆 ) ∈ ( SubMnd ‘ 𝑀 ) ) |
| 5 | 3 4 | sylan | ⊢ ( ( 𝑀 ∈ Grp ∧ 𝑆 ⊆ 𝐵 ) → ( 𝑍 ‘ 𝑆 ) ∈ ( SubMnd ‘ 𝑀 ) ) |
| 6 | simpll | ⊢ ( ( ( 𝑀 ∈ Grp ∧ 𝑆 ⊆ 𝐵 ) ∧ ( 𝑥 ∈ ( 𝑍 ‘ 𝑆 ) ∧ 𝑦 ∈ 𝑆 ) ) → 𝑀 ∈ Grp ) | |
| 7 | 1 2 | cntzssv | ⊢ ( 𝑍 ‘ 𝑆 ) ⊆ 𝐵 |
| 8 | simprl | ⊢ ( ( ( 𝑀 ∈ Grp ∧ 𝑆 ⊆ 𝐵 ) ∧ ( 𝑥 ∈ ( 𝑍 ‘ 𝑆 ) ∧ 𝑦 ∈ 𝑆 ) ) → 𝑥 ∈ ( 𝑍 ‘ 𝑆 ) ) | |
| 9 | 7 8 | sselid | ⊢ ( ( ( 𝑀 ∈ Grp ∧ 𝑆 ⊆ 𝐵 ) ∧ ( 𝑥 ∈ ( 𝑍 ‘ 𝑆 ) ∧ 𝑦 ∈ 𝑆 ) ) → 𝑥 ∈ 𝐵 ) |
| 10 | eqid | ⊢ ( invg ‘ 𝑀 ) = ( invg ‘ 𝑀 ) | |
| 11 | 1 10 | grpinvcl | ⊢ ( ( 𝑀 ∈ Grp ∧ 𝑥 ∈ 𝐵 ) → ( ( invg ‘ 𝑀 ) ‘ 𝑥 ) ∈ 𝐵 ) |
| 12 | 6 9 11 | syl2anc | ⊢ ( ( ( 𝑀 ∈ Grp ∧ 𝑆 ⊆ 𝐵 ) ∧ ( 𝑥 ∈ ( 𝑍 ‘ 𝑆 ) ∧ 𝑦 ∈ 𝑆 ) ) → ( ( invg ‘ 𝑀 ) ‘ 𝑥 ) ∈ 𝐵 ) |
| 13 | ssel2 | ⊢ ( ( 𝑆 ⊆ 𝐵 ∧ 𝑦 ∈ 𝑆 ) → 𝑦 ∈ 𝐵 ) | |
| 14 | 13 | ad2ant2l | ⊢ ( ( ( 𝑀 ∈ Grp ∧ 𝑆 ⊆ 𝐵 ) ∧ ( 𝑥 ∈ ( 𝑍 ‘ 𝑆 ) ∧ 𝑦 ∈ 𝑆 ) ) → 𝑦 ∈ 𝐵 ) |
| 15 | eqid | ⊢ ( +g ‘ 𝑀 ) = ( +g ‘ 𝑀 ) | |
| 16 | 1 15 | grpcl | ⊢ ( ( 𝑀 ∈ Grp ∧ 𝑥 ∈ 𝐵 ∧ ( ( invg ‘ 𝑀 ) ‘ 𝑥 ) ∈ 𝐵 ) → ( 𝑥 ( +g ‘ 𝑀 ) ( ( invg ‘ 𝑀 ) ‘ 𝑥 ) ) ∈ 𝐵 ) |
| 17 | 6 9 12 16 | syl3anc | ⊢ ( ( ( 𝑀 ∈ Grp ∧ 𝑆 ⊆ 𝐵 ) ∧ ( 𝑥 ∈ ( 𝑍 ‘ 𝑆 ) ∧ 𝑦 ∈ 𝑆 ) ) → ( 𝑥 ( +g ‘ 𝑀 ) ( ( invg ‘ 𝑀 ) ‘ 𝑥 ) ) ∈ 𝐵 ) |
| 18 | 1 15 | grpass | ⊢ ( ( 𝑀 ∈ Grp ∧ ( ( ( invg ‘ 𝑀 ) ‘ 𝑥 ) ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ∧ ( 𝑥 ( +g ‘ 𝑀 ) ( ( invg ‘ 𝑀 ) ‘ 𝑥 ) ) ∈ 𝐵 ) ) → ( ( ( ( invg ‘ 𝑀 ) ‘ 𝑥 ) ( +g ‘ 𝑀 ) 𝑦 ) ( +g ‘ 𝑀 ) ( 𝑥 ( +g ‘ 𝑀 ) ( ( invg ‘ 𝑀 ) ‘ 𝑥 ) ) ) = ( ( ( invg ‘ 𝑀 ) ‘ 𝑥 ) ( +g ‘ 𝑀 ) ( 𝑦 ( +g ‘ 𝑀 ) ( 𝑥 ( +g ‘ 𝑀 ) ( ( invg ‘ 𝑀 ) ‘ 𝑥 ) ) ) ) ) |
| 19 | 6 12 14 17 18 | syl13anc | ⊢ ( ( ( 𝑀 ∈ Grp ∧ 𝑆 ⊆ 𝐵 ) ∧ ( 𝑥 ∈ ( 𝑍 ‘ 𝑆 ) ∧ 𝑦 ∈ 𝑆 ) ) → ( ( ( ( invg ‘ 𝑀 ) ‘ 𝑥 ) ( +g ‘ 𝑀 ) 𝑦 ) ( +g ‘ 𝑀 ) ( 𝑥 ( +g ‘ 𝑀 ) ( ( invg ‘ 𝑀 ) ‘ 𝑥 ) ) ) = ( ( ( invg ‘ 𝑀 ) ‘ 𝑥 ) ( +g ‘ 𝑀 ) ( 𝑦 ( +g ‘ 𝑀 ) ( 𝑥 ( +g ‘ 𝑀 ) ( ( invg ‘ 𝑀 ) ‘ 𝑥 ) ) ) ) ) |
| 20 | 1 15 | grpass | ⊢ ( ( 𝑀 ∈ Grp ∧ ( 𝑦 ∈ 𝐵 ∧ 𝑥 ∈ 𝐵 ∧ ( ( invg ‘ 𝑀 ) ‘ 𝑥 ) ∈ 𝐵 ) ) → ( ( 𝑦 ( +g ‘ 𝑀 ) 𝑥 ) ( +g ‘ 𝑀 ) ( ( invg ‘ 𝑀 ) ‘ 𝑥 ) ) = ( 𝑦 ( +g ‘ 𝑀 ) ( 𝑥 ( +g ‘ 𝑀 ) ( ( invg ‘ 𝑀 ) ‘ 𝑥 ) ) ) ) |
| 21 | 6 14 9 12 20 | syl13anc | ⊢ ( ( ( 𝑀 ∈ Grp ∧ 𝑆 ⊆ 𝐵 ) ∧ ( 𝑥 ∈ ( 𝑍 ‘ 𝑆 ) ∧ 𝑦 ∈ 𝑆 ) ) → ( ( 𝑦 ( +g ‘ 𝑀 ) 𝑥 ) ( +g ‘ 𝑀 ) ( ( invg ‘ 𝑀 ) ‘ 𝑥 ) ) = ( 𝑦 ( +g ‘ 𝑀 ) ( 𝑥 ( +g ‘ 𝑀 ) ( ( invg ‘ 𝑀 ) ‘ 𝑥 ) ) ) ) |
| 22 | 21 | oveq2d | ⊢ ( ( ( 𝑀 ∈ Grp ∧ 𝑆 ⊆ 𝐵 ) ∧ ( 𝑥 ∈ ( 𝑍 ‘ 𝑆 ) ∧ 𝑦 ∈ 𝑆 ) ) → ( ( ( invg ‘ 𝑀 ) ‘ 𝑥 ) ( +g ‘ 𝑀 ) ( ( 𝑦 ( +g ‘ 𝑀 ) 𝑥 ) ( +g ‘ 𝑀 ) ( ( invg ‘ 𝑀 ) ‘ 𝑥 ) ) ) = ( ( ( invg ‘ 𝑀 ) ‘ 𝑥 ) ( +g ‘ 𝑀 ) ( 𝑦 ( +g ‘ 𝑀 ) ( 𝑥 ( +g ‘ 𝑀 ) ( ( invg ‘ 𝑀 ) ‘ 𝑥 ) ) ) ) ) |
| 23 | 19 22 | eqtr4d | ⊢ ( ( ( 𝑀 ∈ Grp ∧ 𝑆 ⊆ 𝐵 ) ∧ ( 𝑥 ∈ ( 𝑍 ‘ 𝑆 ) ∧ 𝑦 ∈ 𝑆 ) ) → ( ( ( ( invg ‘ 𝑀 ) ‘ 𝑥 ) ( +g ‘ 𝑀 ) 𝑦 ) ( +g ‘ 𝑀 ) ( 𝑥 ( +g ‘ 𝑀 ) ( ( invg ‘ 𝑀 ) ‘ 𝑥 ) ) ) = ( ( ( invg ‘ 𝑀 ) ‘ 𝑥 ) ( +g ‘ 𝑀 ) ( ( 𝑦 ( +g ‘ 𝑀 ) 𝑥 ) ( +g ‘ 𝑀 ) ( ( invg ‘ 𝑀 ) ‘ 𝑥 ) ) ) ) |
| 24 | 15 2 | cntzi | ⊢ ( ( 𝑥 ∈ ( 𝑍 ‘ 𝑆 ) ∧ 𝑦 ∈ 𝑆 ) → ( 𝑥 ( +g ‘ 𝑀 ) 𝑦 ) = ( 𝑦 ( +g ‘ 𝑀 ) 𝑥 ) ) |
| 25 | 24 | adantl | ⊢ ( ( ( 𝑀 ∈ Grp ∧ 𝑆 ⊆ 𝐵 ) ∧ ( 𝑥 ∈ ( 𝑍 ‘ 𝑆 ) ∧ 𝑦 ∈ 𝑆 ) ) → ( 𝑥 ( +g ‘ 𝑀 ) 𝑦 ) = ( 𝑦 ( +g ‘ 𝑀 ) 𝑥 ) ) |
| 26 | 25 | oveq1d | ⊢ ( ( ( 𝑀 ∈ Grp ∧ 𝑆 ⊆ 𝐵 ) ∧ ( 𝑥 ∈ ( 𝑍 ‘ 𝑆 ) ∧ 𝑦 ∈ 𝑆 ) ) → ( ( 𝑥 ( +g ‘ 𝑀 ) 𝑦 ) ( +g ‘ 𝑀 ) ( ( invg ‘ 𝑀 ) ‘ 𝑥 ) ) = ( ( 𝑦 ( +g ‘ 𝑀 ) 𝑥 ) ( +g ‘ 𝑀 ) ( ( invg ‘ 𝑀 ) ‘ 𝑥 ) ) ) |
| 27 | 26 | oveq2d | ⊢ ( ( ( 𝑀 ∈ Grp ∧ 𝑆 ⊆ 𝐵 ) ∧ ( 𝑥 ∈ ( 𝑍 ‘ 𝑆 ) ∧ 𝑦 ∈ 𝑆 ) ) → ( ( ( invg ‘ 𝑀 ) ‘ 𝑥 ) ( +g ‘ 𝑀 ) ( ( 𝑥 ( +g ‘ 𝑀 ) 𝑦 ) ( +g ‘ 𝑀 ) ( ( invg ‘ 𝑀 ) ‘ 𝑥 ) ) ) = ( ( ( invg ‘ 𝑀 ) ‘ 𝑥 ) ( +g ‘ 𝑀 ) ( ( 𝑦 ( +g ‘ 𝑀 ) 𝑥 ) ( +g ‘ 𝑀 ) ( ( invg ‘ 𝑀 ) ‘ 𝑥 ) ) ) ) |
| 28 | 23 27 | eqtr4d | ⊢ ( ( ( 𝑀 ∈ Grp ∧ 𝑆 ⊆ 𝐵 ) ∧ ( 𝑥 ∈ ( 𝑍 ‘ 𝑆 ) ∧ 𝑦 ∈ 𝑆 ) ) → ( ( ( ( invg ‘ 𝑀 ) ‘ 𝑥 ) ( +g ‘ 𝑀 ) 𝑦 ) ( +g ‘ 𝑀 ) ( 𝑥 ( +g ‘ 𝑀 ) ( ( invg ‘ 𝑀 ) ‘ 𝑥 ) ) ) = ( ( ( invg ‘ 𝑀 ) ‘ 𝑥 ) ( +g ‘ 𝑀 ) ( ( 𝑥 ( +g ‘ 𝑀 ) 𝑦 ) ( +g ‘ 𝑀 ) ( ( invg ‘ 𝑀 ) ‘ 𝑥 ) ) ) ) |
| 29 | 1 15 | grpcl | ⊢ ( ( 𝑀 ∈ Grp ∧ 𝑦 ∈ 𝐵 ∧ ( ( invg ‘ 𝑀 ) ‘ 𝑥 ) ∈ 𝐵 ) → ( 𝑦 ( +g ‘ 𝑀 ) ( ( invg ‘ 𝑀 ) ‘ 𝑥 ) ) ∈ 𝐵 ) |
| 30 | 6 14 12 29 | syl3anc | ⊢ ( ( ( 𝑀 ∈ Grp ∧ 𝑆 ⊆ 𝐵 ) ∧ ( 𝑥 ∈ ( 𝑍 ‘ 𝑆 ) ∧ 𝑦 ∈ 𝑆 ) ) → ( 𝑦 ( +g ‘ 𝑀 ) ( ( invg ‘ 𝑀 ) ‘ 𝑥 ) ) ∈ 𝐵 ) |
| 31 | 1 15 | grpass | ⊢ ( ( 𝑀 ∈ Grp ∧ ( ( ( invg ‘ 𝑀 ) ‘ 𝑥 ) ∈ 𝐵 ∧ 𝑥 ∈ 𝐵 ∧ ( 𝑦 ( +g ‘ 𝑀 ) ( ( invg ‘ 𝑀 ) ‘ 𝑥 ) ) ∈ 𝐵 ) ) → ( ( ( ( invg ‘ 𝑀 ) ‘ 𝑥 ) ( +g ‘ 𝑀 ) 𝑥 ) ( +g ‘ 𝑀 ) ( 𝑦 ( +g ‘ 𝑀 ) ( ( invg ‘ 𝑀 ) ‘ 𝑥 ) ) ) = ( ( ( invg ‘ 𝑀 ) ‘ 𝑥 ) ( +g ‘ 𝑀 ) ( 𝑥 ( +g ‘ 𝑀 ) ( 𝑦 ( +g ‘ 𝑀 ) ( ( invg ‘ 𝑀 ) ‘ 𝑥 ) ) ) ) ) |
| 32 | 6 12 9 30 31 | syl13anc | ⊢ ( ( ( 𝑀 ∈ Grp ∧ 𝑆 ⊆ 𝐵 ) ∧ ( 𝑥 ∈ ( 𝑍 ‘ 𝑆 ) ∧ 𝑦 ∈ 𝑆 ) ) → ( ( ( ( invg ‘ 𝑀 ) ‘ 𝑥 ) ( +g ‘ 𝑀 ) 𝑥 ) ( +g ‘ 𝑀 ) ( 𝑦 ( +g ‘ 𝑀 ) ( ( invg ‘ 𝑀 ) ‘ 𝑥 ) ) ) = ( ( ( invg ‘ 𝑀 ) ‘ 𝑥 ) ( +g ‘ 𝑀 ) ( 𝑥 ( +g ‘ 𝑀 ) ( 𝑦 ( +g ‘ 𝑀 ) ( ( invg ‘ 𝑀 ) ‘ 𝑥 ) ) ) ) ) |
| 33 | 1 15 | grpass | ⊢ ( ( 𝑀 ∈ Grp ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ∧ ( ( invg ‘ 𝑀 ) ‘ 𝑥 ) ∈ 𝐵 ) ) → ( ( 𝑥 ( +g ‘ 𝑀 ) 𝑦 ) ( +g ‘ 𝑀 ) ( ( invg ‘ 𝑀 ) ‘ 𝑥 ) ) = ( 𝑥 ( +g ‘ 𝑀 ) ( 𝑦 ( +g ‘ 𝑀 ) ( ( invg ‘ 𝑀 ) ‘ 𝑥 ) ) ) ) |
| 34 | 6 9 14 12 33 | syl13anc | ⊢ ( ( ( 𝑀 ∈ Grp ∧ 𝑆 ⊆ 𝐵 ) ∧ ( 𝑥 ∈ ( 𝑍 ‘ 𝑆 ) ∧ 𝑦 ∈ 𝑆 ) ) → ( ( 𝑥 ( +g ‘ 𝑀 ) 𝑦 ) ( +g ‘ 𝑀 ) ( ( invg ‘ 𝑀 ) ‘ 𝑥 ) ) = ( 𝑥 ( +g ‘ 𝑀 ) ( 𝑦 ( +g ‘ 𝑀 ) ( ( invg ‘ 𝑀 ) ‘ 𝑥 ) ) ) ) |
| 35 | 34 | oveq2d | ⊢ ( ( ( 𝑀 ∈ Grp ∧ 𝑆 ⊆ 𝐵 ) ∧ ( 𝑥 ∈ ( 𝑍 ‘ 𝑆 ) ∧ 𝑦 ∈ 𝑆 ) ) → ( ( ( invg ‘ 𝑀 ) ‘ 𝑥 ) ( +g ‘ 𝑀 ) ( ( 𝑥 ( +g ‘ 𝑀 ) 𝑦 ) ( +g ‘ 𝑀 ) ( ( invg ‘ 𝑀 ) ‘ 𝑥 ) ) ) = ( ( ( invg ‘ 𝑀 ) ‘ 𝑥 ) ( +g ‘ 𝑀 ) ( 𝑥 ( +g ‘ 𝑀 ) ( 𝑦 ( +g ‘ 𝑀 ) ( ( invg ‘ 𝑀 ) ‘ 𝑥 ) ) ) ) ) |
| 36 | 32 35 | eqtr4d | ⊢ ( ( ( 𝑀 ∈ Grp ∧ 𝑆 ⊆ 𝐵 ) ∧ ( 𝑥 ∈ ( 𝑍 ‘ 𝑆 ) ∧ 𝑦 ∈ 𝑆 ) ) → ( ( ( ( invg ‘ 𝑀 ) ‘ 𝑥 ) ( +g ‘ 𝑀 ) 𝑥 ) ( +g ‘ 𝑀 ) ( 𝑦 ( +g ‘ 𝑀 ) ( ( invg ‘ 𝑀 ) ‘ 𝑥 ) ) ) = ( ( ( invg ‘ 𝑀 ) ‘ 𝑥 ) ( +g ‘ 𝑀 ) ( ( 𝑥 ( +g ‘ 𝑀 ) 𝑦 ) ( +g ‘ 𝑀 ) ( ( invg ‘ 𝑀 ) ‘ 𝑥 ) ) ) ) |
| 37 | 28 36 | eqtr4d | ⊢ ( ( ( 𝑀 ∈ Grp ∧ 𝑆 ⊆ 𝐵 ) ∧ ( 𝑥 ∈ ( 𝑍 ‘ 𝑆 ) ∧ 𝑦 ∈ 𝑆 ) ) → ( ( ( ( invg ‘ 𝑀 ) ‘ 𝑥 ) ( +g ‘ 𝑀 ) 𝑦 ) ( +g ‘ 𝑀 ) ( 𝑥 ( +g ‘ 𝑀 ) ( ( invg ‘ 𝑀 ) ‘ 𝑥 ) ) ) = ( ( ( ( invg ‘ 𝑀 ) ‘ 𝑥 ) ( +g ‘ 𝑀 ) 𝑥 ) ( +g ‘ 𝑀 ) ( 𝑦 ( +g ‘ 𝑀 ) ( ( invg ‘ 𝑀 ) ‘ 𝑥 ) ) ) ) |
| 38 | eqid | ⊢ ( 0g ‘ 𝑀 ) = ( 0g ‘ 𝑀 ) | |
| 39 | 1 15 38 10 | grprinv | ⊢ ( ( 𝑀 ∈ Grp ∧ 𝑥 ∈ 𝐵 ) → ( 𝑥 ( +g ‘ 𝑀 ) ( ( invg ‘ 𝑀 ) ‘ 𝑥 ) ) = ( 0g ‘ 𝑀 ) ) |
| 40 | 6 9 39 | syl2anc | ⊢ ( ( ( 𝑀 ∈ Grp ∧ 𝑆 ⊆ 𝐵 ) ∧ ( 𝑥 ∈ ( 𝑍 ‘ 𝑆 ) ∧ 𝑦 ∈ 𝑆 ) ) → ( 𝑥 ( +g ‘ 𝑀 ) ( ( invg ‘ 𝑀 ) ‘ 𝑥 ) ) = ( 0g ‘ 𝑀 ) ) |
| 41 | 40 | oveq2d | ⊢ ( ( ( 𝑀 ∈ Grp ∧ 𝑆 ⊆ 𝐵 ) ∧ ( 𝑥 ∈ ( 𝑍 ‘ 𝑆 ) ∧ 𝑦 ∈ 𝑆 ) ) → ( ( ( ( invg ‘ 𝑀 ) ‘ 𝑥 ) ( +g ‘ 𝑀 ) 𝑦 ) ( +g ‘ 𝑀 ) ( 𝑥 ( +g ‘ 𝑀 ) ( ( invg ‘ 𝑀 ) ‘ 𝑥 ) ) ) = ( ( ( ( invg ‘ 𝑀 ) ‘ 𝑥 ) ( +g ‘ 𝑀 ) 𝑦 ) ( +g ‘ 𝑀 ) ( 0g ‘ 𝑀 ) ) ) |
| 42 | 1 15 | grpcl | ⊢ ( ( 𝑀 ∈ Grp ∧ ( ( invg ‘ 𝑀 ) ‘ 𝑥 ) ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) → ( ( ( invg ‘ 𝑀 ) ‘ 𝑥 ) ( +g ‘ 𝑀 ) 𝑦 ) ∈ 𝐵 ) |
| 43 | 6 12 14 42 | syl3anc | ⊢ ( ( ( 𝑀 ∈ Grp ∧ 𝑆 ⊆ 𝐵 ) ∧ ( 𝑥 ∈ ( 𝑍 ‘ 𝑆 ) ∧ 𝑦 ∈ 𝑆 ) ) → ( ( ( invg ‘ 𝑀 ) ‘ 𝑥 ) ( +g ‘ 𝑀 ) 𝑦 ) ∈ 𝐵 ) |
| 44 | 1 15 38 | grprid | ⊢ ( ( 𝑀 ∈ Grp ∧ ( ( ( invg ‘ 𝑀 ) ‘ 𝑥 ) ( +g ‘ 𝑀 ) 𝑦 ) ∈ 𝐵 ) → ( ( ( ( invg ‘ 𝑀 ) ‘ 𝑥 ) ( +g ‘ 𝑀 ) 𝑦 ) ( +g ‘ 𝑀 ) ( 0g ‘ 𝑀 ) ) = ( ( ( invg ‘ 𝑀 ) ‘ 𝑥 ) ( +g ‘ 𝑀 ) 𝑦 ) ) |
| 45 | 6 43 44 | syl2anc | ⊢ ( ( ( 𝑀 ∈ Grp ∧ 𝑆 ⊆ 𝐵 ) ∧ ( 𝑥 ∈ ( 𝑍 ‘ 𝑆 ) ∧ 𝑦 ∈ 𝑆 ) ) → ( ( ( ( invg ‘ 𝑀 ) ‘ 𝑥 ) ( +g ‘ 𝑀 ) 𝑦 ) ( +g ‘ 𝑀 ) ( 0g ‘ 𝑀 ) ) = ( ( ( invg ‘ 𝑀 ) ‘ 𝑥 ) ( +g ‘ 𝑀 ) 𝑦 ) ) |
| 46 | 41 45 | eqtrd | ⊢ ( ( ( 𝑀 ∈ Grp ∧ 𝑆 ⊆ 𝐵 ) ∧ ( 𝑥 ∈ ( 𝑍 ‘ 𝑆 ) ∧ 𝑦 ∈ 𝑆 ) ) → ( ( ( ( invg ‘ 𝑀 ) ‘ 𝑥 ) ( +g ‘ 𝑀 ) 𝑦 ) ( +g ‘ 𝑀 ) ( 𝑥 ( +g ‘ 𝑀 ) ( ( invg ‘ 𝑀 ) ‘ 𝑥 ) ) ) = ( ( ( invg ‘ 𝑀 ) ‘ 𝑥 ) ( +g ‘ 𝑀 ) 𝑦 ) ) |
| 47 | 1 15 38 10 | grplinv | ⊢ ( ( 𝑀 ∈ Grp ∧ 𝑥 ∈ 𝐵 ) → ( ( ( invg ‘ 𝑀 ) ‘ 𝑥 ) ( +g ‘ 𝑀 ) 𝑥 ) = ( 0g ‘ 𝑀 ) ) |
| 48 | 6 9 47 | syl2anc | ⊢ ( ( ( 𝑀 ∈ Grp ∧ 𝑆 ⊆ 𝐵 ) ∧ ( 𝑥 ∈ ( 𝑍 ‘ 𝑆 ) ∧ 𝑦 ∈ 𝑆 ) ) → ( ( ( invg ‘ 𝑀 ) ‘ 𝑥 ) ( +g ‘ 𝑀 ) 𝑥 ) = ( 0g ‘ 𝑀 ) ) |
| 49 | 48 | oveq1d | ⊢ ( ( ( 𝑀 ∈ Grp ∧ 𝑆 ⊆ 𝐵 ) ∧ ( 𝑥 ∈ ( 𝑍 ‘ 𝑆 ) ∧ 𝑦 ∈ 𝑆 ) ) → ( ( ( ( invg ‘ 𝑀 ) ‘ 𝑥 ) ( +g ‘ 𝑀 ) 𝑥 ) ( +g ‘ 𝑀 ) ( 𝑦 ( +g ‘ 𝑀 ) ( ( invg ‘ 𝑀 ) ‘ 𝑥 ) ) ) = ( ( 0g ‘ 𝑀 ) ( +g ‘ 𝑀 ) ( 𝑦 ( +g ‘ 𝑀 ) ( ( invg ‘ 𝑀 ) ‘ 𝑥 ) ) ) ) |
| 50 | 1 15 38 | grplid | ⊢ ( ( 𝑀 ∈ Grp ∧ ( 𝑦 ( +g ‘ 𝑀 ) ( ( invg ‘ 𝑀 ) ‘ 𝑥 ) ) ∈ 𝐵 ) → ( ( 0g ‘ 𝑀 ) ( +g ‘ 𝑀 ) ( 𝑦 ( +g ‘ 𝑀 ) ( ( invg ‘ 𝑀 ) ‘ 𝑥 ) ) ) = ( 𝑦 ( +g ‘ 𝑀 ) ( ( invg ‘ 𝑀 ) ‘ 𝑥 ) ) ) |
| 51 | 6 30 50 | syl2anc | ⊢ ( ( ( 𝑀 ∈ Grp ∧ 𝑆 ⊆ 𝐵 ) ∧ ( 𝑥 ∈ ( 𝑍 ‘ 𝑆 ) ∧ 𝑦 ∈ 𝑆 ) ) → ( ( 0g ‘ 𝑀 ) ( +g ‘ 𝑀 ) ( 𝑦 ( +g ‘ 𝑀 ) ( ( invg ‘ 𝑀 ) ‘ 𝑥 ) ) ) = ( 𝑦 ( +g ‘ 𝑀 ) ( ( invg ‘ 𝑀 ) ‘ 𝑥 ) ) ) |
| 52 | 49 51 | eqtrd | ⊢ ( ( ( 𝑀 ∈ Grp ∧ 𝑆 ⊆ 𝐵 ) ∧ ( 𝑥 ∈ ( 𝑍 ‘ 𝑆 ) ∧ 𝑦 ∈ 𝑆 ) ) → ( ( ( ( invg ‘ 𝑀 ) ‘ 𝑥 ) ( +g ‘ 𝑀 ) 𝑥 ) ( +g ‘ 𝑀 ) ( 𝑦 ( +g ‘ 𝑀 ) ( ( invg ‘ 𝑀 ) ‘ 𝑥 ) ) ) = ( 𝑦 ( +g ‘ 𝑀 ) ( ( invg ‘ 𝑀 ) ‘ 𝑥 ) ) ) |
| 53 | 37 46 52 | 3eqtr3d | ⊢ ( ( ( 𝑀 ∈ Grp ∧ 𝑆 ⊆ 𝐵 ) ∧ ( 𝑥 ∈ ( 𝑍 ‘ 𝑆 ) ∧ 𝑦 ∈ 𝑆 ) ) → ( ( ( invg ‘ 𝑀 ) ‘ 𝑥 ) ( +g ‘ 𝑀 ) 𝑦 ) = ( 𝑦 ( +g ‘ 𝑀 ) ( ( invg ‘ 𝑀 ) ‘ 𝑥 ) ) ) |
| 54 | 53 | anassrs | ⊢ ( ( ( ( 𝑀 ∈ Grp ∧ 𝑆 ⊆ 𝐵 ) ∧ 𝑥 ∈ ( 𝑍 ‘ 𝑆 ) ) ∧ 𝑦 ∈ 𝑆 ) → ( ( ( invg ‘ 𝑀 ) ‘ 𝑥 ) ( +g ‘ 𝑀 ) 𝑦 ) = ( 𝑦 ( +g ‘ 𝑀 ) ( ( invg ‘ 𝑀 ) ‘ 𝑥 ) ) ) |
| 55 | 54 | ralrimiva | ⊢ ( ( ( 𝑀 ∈ Grp ∧ 𝑆 ⊆ 𝐵 ) ∧ 𝑥 ∈ ( 𝑍 ‘ 𝑆 ) ) → ∀ 𝑦 ∈ 𝑆 ( ( ( invg ‘ 𝑀 ) ‘ 𝑥 ) ( +g ‘ 𝑀 ) 𝑦 ) = ( 𝑦 ( +g ‘ 𝑀 ) ( ( invg ‘ 𝑀 ) ‘ 𝑥 ) ) ) |
| 56 | simplr | ⊢ ( ( ( 𝑀 ∈ Grp ∧ 𝑆 ⊆ 𝐵 ) ∧ 𝑥 ∈ ( 𝑍 ‘ 𝑆 ) ) → 𝑆 ⊆ 𝐵 ) | |
| 57 | simpll | ⊢ ( ( ( 𝑀 ∈ Grp ∧ 𝑆 ⊆ 𝐵 ) ∧ 𝑥 ∈ ( 𝑍 ‘ 𝑆 ) ) → 𝑀 ∈ Grp ) | |
| 58 | simpr | ⊢ ( ( ( 𝑀 ∈ Grp ∧ 𝑆 ⊆ 𝐵 ) ∧ 𝑥 ∈ ( 𝑍 ‘ 𝑆 ) ) → 𝑥 ∈ ( 𝑍 ‘ 𝑆 ) ) | |
| 59 | 7 58 | sselid | ⊢ ( ( ( 𝑀 ∈ Grp ∧ 𝑆 ⊆ 𝐵 ) ∧ 𝑥 ∈ ( 𝑍 ‘ 𝑆 ) ) → 𝑥 ∈ 𝐵 ) |
| 60 | 57 59 11 | syl2anc | ⊢ ( ( ( 𝑀 ∈ Grp ∧ 𝑆 ⊆ 𝐵 ) ∧ 𝑥 ∈ ( 𝑍 ‘ 𝑆 ) ) → ( ( invg ‘ 𝑀 ) ‘ 𝑥 ) ∈ 𝐵 ) |
| 61 | 1 15 2 | cntzel | ⊢ ( ( 𝑆 ⊆ 𝐵 ∧ ( ( invg ‘ 𝑀 ) ‘ 𝑥 ) ∈ 𝐵 ) → ( ( ( invg ‘ 𝑀 ) ‘ 𝑥 ) ∈ ( 𝑍 ‘ 𝑆 ) ↔ ∀ 𝑦 ∈ 𝑆 ( ( ( invg ‘ 𝑀 ) ‘ 𝑥 ) ( +g ‘ 𝑀 ) 𝑦 ) = ( 𝑦 ( +g ‘ 𝑀 ) ( ( invg ‘ 𝑀 ) ‘ 𝑥 ) ) ) ) |
| 62 | 56 60 61 | syl2anc | ⊢ ( ( ( 𝑀 ∈ Grp ∧ 𝑆 ⊆ 𝐵 ) ∧ 𝑥 ∈ ( 𝑍 ‘ 𝑆 ) ) → ( ( ( invg ‘ 𝑀 ) ‘ 𝑥 ) ∈ ( 𝑍 ‘ 𝑆 ) ↔ ∀ 𝑦 ∈ 𝑆 ( ( ( invg ‘ 𝑀 ) ‘ 𝑥 ) ( +g ‘ 𝑀 ) 𝑦 ) = ( 𝑦 ( +g ‘ 𝑀 ) ( ( invg ‘ 𝑀 ) ‘ 𝑥 ) ) ) ) |
| 63 | 55 62 | mpbird | ⊢ ( ( ( 𝑀 ∈ Grp ∧ 𝑆 ⊆ 𝐵 ) ∧ 𝑥 ∈ ( 𝑍 ‘ 𝑆 ) ) → ( ( invg ‘ 𝑀 ) ‘ 𝑥 ) ∈ ( 𝑍 ‘ 𝑆 ) ) |
| 64 | 63 | ralrimiva | ⊢ ( ( 𝑀 ∈ Grp ∧ 𝑆 ⊆ 𝐵 ) → ∀ 𝑥 ∈ ( 𝑍 ‘ 𝑆 ) ( ( invg ‘ 𝑀 ) ‘ 𝑥 ) ∈ ( 𝑍 ‘ 𝑆 ) ) |
| 65 | 10 | issubg3 | ⊢ ( 𝑀 ∈ Grp → ( ( 𝑍 ‘ 𝑆 ) ∈ ( SubGrp ‘ 𝑀 ) ↔ ( ( 𝑍 ‘ 𝑆 ) ∈ ( SubMnd ‘ 𝑀 ) ∧ ∀ 𝑥 ∈ ( 𝑍 ‘ 𝑆 ) ( ( invg ‘ 𝑀 ) ‘ 𝑥 ) ∈ ( 𝑍 ‘ 𝑆 ) ) ) ) |
| 66 | 65 | adantr | ⊢ ( ( 𝑀 ∈ Grp ∧ 𝑆 ⊆ 𝐵 ) → ( ( 𝑍 ‘ 𝑆 ) ∈ ( SubGrp ‘ 𝑀 ) ↔ ( ( 𝑍 ‘ 𝑆 ) ∈ ( SubMnd ‘ 𝑀 ) ∧ ∀ 𝑥 ∈ ( 𝑍 ‘ 𝑆 ) ( ( invg ‘ 𝑀 ) ‘ 𝑥 ) ∈ ( 𝑍 ‘ 𝑆 ) ) ) ) |
| 67 | 5 64 66 | mpbir2and | ⊢ ( ( 𝑀 ∈ Grp ∧ 𝑆 ⊆ 𝐵 ) → ( 𝑍 ‘ 𝑆 ) ∈ ( SubGrp ‘ 𝑀 ) ) |