This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The direct product splits into the direct product of any partition of the index set. (Contributed by Mario Carneiro, 25-Apr-2016)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | dprdsplit.2 | ⊢ ( 𝜑 → 𝑆 : 𝐼 ⟶ ( SubGrp ‘ 𝐺 ) ) | |
| dprdsplit.i | ⊢ ( 𝜑 → ( 𝐶 ∩ 𝐷 ) = ∅ ) | ||
| dprdsplit.u | ⊢ ( 𝜑 → 𝐼 = ( 𝐶 ∪ 𝐷 ) ) | ||
| dmdprdsplit.z | ⊢ 𝑍 = ( Cntz ‘ 𝐺 ) | ||
| dmdprdsplit.0 | ⊢ 0 = ( 0g ‘ 𝐺 ) | ||
| Assertion | dmdprdsplit | ⊢ ( 𝜑 → ( 𝐺 dom DProd 𝑆 ↔ ( ( 𝐺 dom DProd ( 𝑆 ↾ 𝐶 ) ∧ 𝐺 dom DProd ( 𝑆 ↾ 𝐷 ) ) ∧ ( 𝐺 DProd ( 𝑆 ↾ 𝐶 ) ) ⊆ ( 𝑍 ‘ ( 𝐺 DProd ( 𝑆 ↾ 𝐷 ) ) ) ∧ ( ( 𝐺 DProd ( 𝑆 ↾ 𝐶 ) ) ∩ ( 𝐺 DProd ( 𝑆 ↾ 𝐷 ) ) ) = { 0 } ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dprdsplit.2 | ⊢ ( 𝜑 → 𝑆 : 𝐼 ⟶ ( SubGrp ‘ 𝐺 ) ) | |
| 2 | dprdsplit.i | ⊢ ( 𝜑 → ( 𝐶 ∩ 𝐷 ) = ∅ ) | |
| 3 | dprdsplit.u | ⊢ ( 𝜑 → 𝐼 = ( 𝐶 ∪ 𝐷 ) ) | |
| 4 | dmdprdsplit.z | ⊢ 𝑍 = ( Cntz ‘ 𝐺 ) | |
| 5 | dmdprdsplit.0 | ⊢ 0 = ( 0g ‘ 𝐺 ) | |
| 6 | simpr | ⊢ ( ( 𝜑 ∧ 𝐺 dom DProd 𝑆 ) → 𝐺 dom DProd 𝑆 ) | |
| 7 | 1 | fdmd | ⊢ ( 𝜑 → dom 𝑆 = 𝐼 ) |
| 8 | 7 | adantr | ⊢ ( ( 𝜑 ∧ 𝐺 dom DProd 𝑆 ) → dom 𝑆 = 𝐼 ) |
| 9 | ssun1 | ⊢ 𝐶 ⊆ ( 𝐶 ∪ 𝐷 ) | |
| 10 | 3 | adantr | ⊢ ( ( 𝜑 ∧ 𝐺 dom DProd 𝑆 ) → 𝐼 = ( 𝐶 ∪ 𝐷 ) ) |
| 11 | 9 10 | sseqtrrid | ⊢ ( ( 𝜑 ∧ 𝐺 dom DProd 𝑆 ) → 𝐶 ⊆ 𝐼 ) |
| 12 | 6 8 11 | dprdres | ⊢ ( ( 𝜑 ∧ 𝐺 dom DProd 𝑆 ) → ( 𝐺 dom DProd ( 𝑆 ↾ 𝐶 ) ∧ ( 𝐺 DProd ( 𝑆 ↾ 𝐶 ) ) ⊆ ( 𝐺 DProd 𝑆 ) ) ) |
| 13 | 12 | simpld | ⊢ ( ( 𝜑 ∧ 𝐺 dom DProd 𝑆 ) → 𝐺 dom DProd ( 𝑆 ↾ 𝐶 ) ) |
| 14 | ssun2 | ⊢ 𝐷 ⊆ ( 𝐶 ∪ 𝐷 ) | |
| 15 | 14 10 | sseqtrrid | ⊢ ( ( 𝜑 ∧ 𝐺 dom DProd 𝑆 ) → 𝐷 ⊆ 𝐼 ) |
| 16 | 6 8 15 | dprdres | ⊢ ( ( 𝜑 ∧ 𝐺 dom DProd 𝑆 ) → ( 𝐺 dom DProd ( 𝑆 ↾ 𝐷 ) ∧ ( 𝐺 DProd ( 𝑆 ↾ 𝐷 ) ) ⊆ ( 𝐺 DProd 𝑆 ) ) ) |
| 17 | 16 | simpld | ⊢ ( ( 𝜑 ∧ 𝐺 dom DProd 𝑆 ) → 𝐺 dom DProd ( 𝑆 ↾ 𝐷 ) ) |
| 18 | 13 17 | jca | ⊢ ( ( 𝜑 ∧ 𝐺 dom DProd 𝑆 ) → ( 𝐺 dom DProd ( 𝑆 ↾ 𝐶 ) ∧ 𝐺 dom DProd ( 𝑆 ↾ 𝐷 ) ) ) |
| 19 | 2 | adantr | ⊢ ( ( 𝜑 ∧ 𝐺 dom DProd 𝑆 ) → ( 𝐶 ∩ 𝐷 ) = ∅ ) |
| 20 | 6 8 11 15 19 4 | dprdcntz2 | ⊢ ( ( 𝜑 ∧ 𝐺 dom DProd 𝑆 ) → ( 𝐺 DProd ( 𝑆 ↾ 𝐶 ) ) ⊆ ( 𝑍 ‘ ( 𝐺 DProd ( 𝑆 ↾ 𝐷 ) ) ) ) |
| 21 | 6 8 11 15 19 5 | dprddisj2 | ⊢ ( ( 𝜑 ∧ 𝐺 dom DProd 𝑆 ) → ( ( 𝐺 DProd ( 𝑆 ↾ 𝐶 ) ) ∩ ( 𝐺 DProd ( 𝑆 ↾ 𝐷 ) ) ) = { 0 } ) |
| 22 | 18 20 21 | 3jca | ⊢ ( ( 𝜑 ∧ 𝐺 dom DProd 𝑆 ) → ( ( 𝐺 dom DProd ( 𝑆 ↾ 𝐶 ) ∧ 𝐺 dom DProd ( 𝑆 ↾ 𝐷 ) ) ∧ ( 𝐺 DProd ( 𝑆 ↾ 𝐶 ) ) ⊆ ( 𝑍 ‘ ( 𝐺 DProd ( 𝑆 ↾ 𝐷 ) ) ) ∧ ( ( 𝐺 DProd ( 𝑆 ↾ 𝐶 ) ) ∩ ( 𝐺 DProd ( 𝑆 ↾ 𝐷 ) ) ) = { 0 } ) ) |
| 23 | 1 | adantr | ⊢ ( ( 𝜑 ∧ ( ( 𝐺 dom DProd ( 𝑆 ↾ 𝐶 ) ∧ 𝐺 dom DProd ( 𝑆 ↾ 𝐷 ) ) ∧ ( 𝐺 DProd ( 𝑆 ↾ 𝐶 ) ) ⊆ ( 𝑍 ‘ ( 𝐺 DProd ( 𝑆 ↾ 𝐷 ) ) ) ∧ ( ( 𝐺 DProd ( 𝑆 ↾ 𝐶 ) ) ∩ ( 𝐺 DProd ( 𝑆 ↾ 𝐷 ) ) ) = { 0 } ) ) → 𝑆 : 𝐼 ⟶ ( SubGrp ‘ 𝐺 ) ) |
| 24 | 2 | adantr | ⊢ ( ( 𝜑 ∧ ( ( 𝐺 dom DProd ( 𝑆 ↾ 𝐶 ) ∧ 𝐺 dom DProd ( 𝑆 ↾ 𝐷 ) ) ∧ ( 𝐺 DProd ( 𝑆 ↾ 𝐶 ) ) ⊆ ( 𝑍 ‘ ( 𝐺 DProd ( 𝑆 ↾ 𝐷 ) ) ) ∧ ( ( 𝐺 DProd ( 𝑆 ↾ 𝐶 ) ) ∩ ( 𝐺 DProd ( 𝑆 ↾ 𝐷 ) ) ) = { 0 } ) ) → ( 𝐶 ∩ 𝐷 ) = ∅ ) |
| 25 | 3 | adantr | ⊢ ( ( 𝜑 ∧ ( ( 𝐺 dom DProd ( 𝑆 ↾ 𝐶 ) ∧ 𝐺 dom DProd ( 𝑆 ↾ 𝐷 ) ) ∧ ( 𝐺 DProd ( 𝑆 ↾ 𝐶 ) ) ⊆ ( 𝑍 ‘ ( 𝐺 DProd ( 𝑆 ↾ 𝐷 ) ) ) ∧ ( ( 𝐺 DProd ( 𝑆 ↾ 𝐶 ) ) ∩ ( 𝐺 DProd ( 𝑆 ↾ 𝐷 ) ) ) = { 0 } ) ) → 𝐼 = ( 𝐶 ∪ 𝐷 ) ) |
| 26 | simpr1l | ⊢ ( ( 𝜑 ∧ ( ( 𝐺 dom DProd ( 𝑆 ↾ 𝐶 ) ∧ 𝐺 dom DProd ( 𝑆 ↾ 𝐷 ) ) ∧ ( 𝐺 DProd ( 𝑆 ↾ 𝐶 ) ) ⊆ ( 𝑍 ‘ ( 𝐺 DProd ( 𝑆 ↾ 𝐷 ) ) ) ∧ ( ( 𝐺 DProd ( 𝑆 ↾ 𝐶 ) ) ∩ ( 𝐺 DProd ( 𝑆 ↾ 𝐷 ) ) ) = { 0 } ) ) → 𝐺 dom DProd ( 𝑆 ↾ 𝐶 ) ) | |
| 27 | simpr1r | ⊢ ( ( 𝜑 ∧ ( ( 𝐺 dom DProd ( 𝑆 ↾ 𝐶 ) ∧ 𝐺 dom DProd ( 𝑆 ↾ 𝐷 ) ) ∧ ( 𝐺 DProd ( 𝑆 ↾ 𝐶 ) ) ⊆ ( 𝑍 ‘ ( 𝐺 DProd ( 𝑆 ↾ 𝐷 ) ) ) ∧ ( ( 𝐺 DProd ( 𝑆 ↾ 𝐶 ) ) ∩ ( 𝐺 DProd ( 𝑆 ↾ 𝐷 ) ) ) = { 0 } ) ) → 𝐺 dom DProd ( 𝑆 ↾ 𝐷 ) ) | |
| 28 | simpr2 | ⊢ ( ( 𝜑 ∧ ( ( 𝐺 dom DProd ( 𝑆 ↾ 𝐶 ) ∧ 𝐺 dom DProd ( 𝑆 ↾ 𝐷 ) ) ∧ ( 𝐺 DProd ( 𝑆 ↾ 𝐶 ) ) ⊆ ( 𝑍 ‘ ( 𝐺 DProd ( 𝑆 ↾ 𝐷 ) ) ) ∧ ( ( 𝐺 DProd ( 𝑆 ↾ 𝐶 ) ) ∩ ( 𝐺 DProd ( 𝑆 ↾ 𝐷 ) ) ) = { 0 } ) ) → ( 𝐺 DProd ( 𝑆 ↾ 𝐶 ) ) ⊆ ( 𝑍 ‘ ( 𝐺 DProd ( 𝑆 ↾ 𝐷 ) ) ) ) | |
| 29 | simpr3 | ⊢ ( ( 𝜑 ∧ ( ( 𝐺 dom DProd ( 𝑆 ↾ 𝐶 ) ∧ 𝐺 dom DProd ( 𝑆 ↾ 𝐷 ) ) ∧ ( 𝐺 DProd ( 𝑆 ↾ 𝐶 ) ) ⊆ ( 𝑍 ‘ ( 𝐺 DProd ( 𝑆 ↾ 𝐷 ) ) ) ∧ ( ( 𝐺 DProd ( 𝑆 ↾ 𝐶 ) ) ∩ ( 𝐺 DProd ( 𝑆 ↾ 𝐷 ) ) ) = { 0 } ) ) → ( ( 𝐺 DProd ( 𝑆 ↾ 𝐶 ) ) ∩ ( 𝐺 DProd ( 𝑆 ↾ 𝐷 ) ) ) = { 0 } ) | |
| 30 | 23 24 25 4 5 26 27 28 29 | dmdprdsplit2 | ⊢ ( ( 𝜑 ∧ ( ( 𝐺 dom DProd ( 𝑆 ↾ 𝐶 ) ∧ 𝐺 dom DProd ( 𝑆 ↾ 𝐷 ) ) ∧ ( 𝐺 DProd ( 𝑆 ↾ 𝐶 ) ) ⊆ ( 𝑍 ‘ ( 𝐺 DProd ( 𝑆 ↾ 𝐷 ) ) ) ∧ ( ( 𝐺 DProd ( 𝑆 ↾ 𝐶 ) ) ∩ ( 𝐺 DProd ( 𝑆 ↾ 𝐷 ) ) ) = { 0 } ) ) → 𝐺 dom DProd 𝑆 ) |
| 31 | 22 30 | impbida | ⊢ ( 𝜑 → ( 𝐺 dom DProd 𝑆 ↔ ( ( 𝐺 dom DProd ( 𝑆 ↾ 𝐶 ) ∧ 𝐺 dom DProd ( 𝑆 ↾ 𝐷 ) ) ∧ ( 𝐺 DProd ( 𝑆 ↾ 𝐶 ) ) ⊆ ( 𝑍 ‘ ( 𝐺 DProd ( 𝑆 ↾ 𝐷 ) ) ) ∧ ( ( 𝐺 DProd ( 𝑆 ↾ 𝐶 ) ) ∩ ( 𝐺 DProd ( 𝑆 ↾ 𝐷 ) ) ) = { 0 } ) ) ) |