This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The group identity is an element of any subgroup. (Contributed by Mario Carneiro, 2-Dec-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | subg0cl.i | ⊢ 0 = ( 0g ‘ 𝐺 ) | |
| Assertion | subg0cl | ⊢ ( 𝑆 ∈ ( SubGrp ‘ 𝐺 ) → 0 ∈ 𝑆 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | subg0cl.i | ⊢ 0 = ( 0g ‘ 𝐺 ) | |
| 2 | eqid | ⊢ ( 𝐺 ↾s 𝑆 ) = ( 𝐺 ↾s 𝑆 ) | |
| 3 | 2 | subggrp | ⊢ ( 𝑆 ∈ ( SubGrp ‘ 𝐺 ) → ( 𝐺 ↾s 𝑆 ) ∈ Grp ) |
| 4 | eqid | ⊢ ( Base ‘ ( 𝐺 ↾s 𝑆 ) ) = ( Base ‘ ( 𝐺 ↾s 𝑆 ) ) | |
| 5 | eqid | ⊢ ( 0g ‘ ( 𝐺 ↾s 𝑆 ) ) = ( 0g ‘ ( 𝐺 ↾s 𝑆 ) ) | |
| 6 | 4 5 | grpidcl | ⊢ ( ( 𝐺 ↾s 𝑆 ) ∈ Grp → ( 0g ‘ ( 𝐺 ↾s 𝑆 ) ) ∈ ( Base ‘ ( 𝐺 ↾s 𝑆 ) ) ) |
| 7 | 3 6 | syl | ⊢ ( 𝑆 ∈ ( SubGrp ‘ 𝐺 ) → ( 0g ‘ ( 𝐺 ↾s 𝑆 ) ) ∈ ( Base ‘ ( 𝐺 ↾s 𝑆 ) ) ) |
| 8 | 2 1 | subg0 | ⊢ ( 𝑆 ∈ ( SubGrp ‘ 𝐺 ) → 0 = ( 0g ‘ ( 𝐺 ↾s 𝑆 ) ) ) |
| 9 | 2 | subgbas | ⊢ ( 𝑆 ∈ ( SubGrp ‘ 𝐺 ) → 𝑆 = ( Base ‘ ( 𝐺 ↾s 𝑆 ) ) ) |
| 10 | 7 8 9 | 3eltr4d | ⊢ ( 𝑆 ∈ ( SubGrp ‘ 𝐺 ) → 0 ∈ 𝑆 ) |