This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Subgroups are an algebraic closure system. (Contributed by Stefan O'Rear, 4-Apr-2015) (Revised by Mario Carneiro, 22-Aug-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | subgacs.b | ⊢ 𝐵 = ( Base ‘ 𝐺 ) | |
| Assertion | subgacs | ⊢ ( 𝐺 ∈ Grp → ( SubGrp ‘ 𝐺 ) ∈ ( ACS ‘ 𝐵 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | subgacs.b | ⊢ 𝐵 = ( Base ‘ 𝐺 ) | |
| 2 | eqid | ⊢ ( invg ‘ 𝐺 ) = ( invg ‘ 𝐺 ) | |
| 3 | 2 | issubg3 | ⊢ ( 𝐺 ∈ Grp → ( 𝑠 ∈ ( SubGrp ‘ 𝐺 ) ↔ ( 𝑠 ∈ ( SubMnd ‘ 𝐺 ) ∧ ∀ 𝑥 ∈ 𝑠 ( ( invg ‘ 𝐺 ) ‘ 𝑥 ) ∈ 𝑠 ) ) ) |
| 4 | 1 | submss | ⊢ ( 𝑠 ∈ ( SubMnd ‘ 𝐺 ) → 𝑠 ⊆ 𝐵 ) |
| 5 | 4 | adantl | ⊢ ( ( 𝐺 ∈ Grp ∧ 𝑠 ∈ ( SubMnd ‘ 𝐺 ) ) → 𝑠 ⊆ 𝐵 ) |
| 6 | velpw | ⊢ ( 𝑠 ∈ 𝒫 𝐵 ↔ 𝑠 ⊆ 𝐵 ) | |
| 7 | 5 6 | sylibr | ⊢ ( ( 𝐺 ∈ Grp ∧ 𝑠 ∈ ( SubMnd ‘ 𝐺 ) ) → 𝑠 ∈ 𝒫 𝐵 ) |
| 8 | eleq2w | ⊢ ( 𝑦 = 𝑠 → ( ( ( invg ‘ 𝐺 ) ‘ 𝑥 ) ∈ 𝑦 ↔ ( ( invg ‘ 𝐺 ) ‘ 𝑥 ) ∈ 𝑠 ) ) | |
| 9 | 8 | raleqbi1dv | ⊢ ( 𝑦 = 𝑠 → ( ∀ 𝑥 ∈ 𝑦 ( ( invg ‘ 𝐺 ) ‘ 𝑥 ) ∈ 𝑦 ↔ ∀ 𝑥 ∈ 𝑠 ( ( invg ‘ 𝐺 ) ‘ 𝑥 ) ∈ 𝑠 ) ) |
| 10 | 9 | elrab3 | ⊢ ( 𝑠 ∈ 𝒫 𝐵 → ( 𝑠 ∈ { 𝑦 ∈ 𝒫 𝐵 ∣ ∀ 𝑥 ∈ 𝑦 ( ( invg ‘ 𝐺 ) ‘ 𝑥 ) ∈ 𝑦 } ↔ ∀ 𝑥 ∈ 𝑠 ( ( invg ‘ 𝐺 ) ‘ 𝑥 ) ∈ 𝑠 ) ) |
| 11 | 7 10 | syl | ⊢ ( ( 𝐺 ∈ Grp ∧ 𝑠 ∈ ( SubMnd ‘ 𝐺 ) ) → ( 𝑠 ∈ { 𝑦 ∈ 𝒫 𝐵 ∣ ∀ 𝑥 ∈ 𝑦 ( ( invg ‘ 𝐺 ) ‘ 𝑥 ) ∈ 𝑦 } ↔ ∀ 𝑥 ∈ 𝑠 ( ( invg ‘ 𝐺 ) ‘ 𝑥 ) ∈ 𝑠 ) ) |
| 12 | 11 | pm5.32da | ⊢ ( 𝐺 ∈ Grp → ( ( 𝑠 ∈ ( SubMnd ‘ 𝐺 ) ∧ 𝑠 ∈ { 𝑦 ∈ 𝒫 𝐵 ∣ ∀ 𝑥 ∈ 𝑦 ( ( invg ‘ 𝐺 ) ‘ 𝑥 ) ∈ 𝑦 } ) ↔ ( 𝑠 ∈ ( SubMnd ‘ 𝐺 ) ∧ ∀ 𝑥 ∈ 𝑠 ( ( invg ‘ 𝐺 ) ‘ 𝑥 ) ∈ 𝑠 ) ) ) |
| 13 | 3 12 | bitr4d | ⊢ ( 𝐺 ∈ Grp → ( 𝑠 ∈ ( SubGrp ‘ 𝐺 ) ↔ ( 𝑠 ∈ ( SubMnd ‘ 𝐺 ) ∧ 𝑠 ∈ { 𝑦 ∈ 𝒫 𝐵 ∣ ∀ 𝑥 ∈ 𝑦 ( ( invg ‘ 𝐺 ) ‘ 𝑥 ) ∈ 𝑦 } ) ) ) |
| 14 | elin | ⊢ ( 𝑠 ∈ ( ( SubMnd ‘ 𝐺 ) ∩ { 𝑦 ∈ 𝒫 𝐵 ∣ ∀ 𝑥 ∈ 𝑦 ( ( invg ‘ 𝐺 ) ‘ 𝑥 ) ∈ 𝑦 } ) ↔ ( 𝑠 ∈ ( SubMnd ‘ 𝐺 ) ∧ 𝑠 ∈ { 𝑦 ∈ 𝒫 𝐵 ∣ ∀ 𝑥 ∈ 𝑦 ( ( invg ‘ 𝐺 ) ‘ 𝑥 ) ∈ 𝑦 } ) ) | |
| 15 | 13 14 | bitr4di | ⊢ ( 𝐺 ∈ Grp → ( 𝑠 ∈ ( SubGrp ‘ 𝐺 ) ↔ 𝑠 ∈ ( ( SubMnd ‘ 𝐺 ) ∩ { 𝑦 ∈ 𝒫 𝐵 ∣ ∀ 𝑥 ∈ 𝑦 ( ( invg ‘ 𝐺 ) ‘ 𝑥 ) ∈ 𝑦 } ) ) ) |
| 16 | 15 | eqrdv | ⊢ ( 𝐺 ∈ Grp → ( SubGrp ‘ 𝐺 ) = ( ( SubMnd ‘ 𝐺 ) ∩ { 𝑦 ∈ 𝒫 𝐵 ∣ ∀ 𝑥 ∈ 𝑦 ( ( invg ‘ 𝐺 ) ‘ 𝑥 ) ∈ 𝑦 } ) ) |
| 17 | 1 | fvexi | ⊢ 𝐵 ∈ V |
| 18 | mreacs | ⊢ ( 𝐵 ∈ V → ( ACS ‘ 𝐵 ) ∈ ( Moore ‘ 𝒫 𝐵 ) ) | |
| 19 | 17 18 | mp1i | ⊢ ( 𝐺 ∈ Grp → ( ACS ‘ 𝐵 ) ∈ ( Moore ‘ 𝒫 𝐵 ) ) |
| 20 | grpmnd | ⊢ ( 𝐺 ∈ Grp → 𝐺 ∈ Mnd ) | |
| 21 | 1 | submacs | ⊢ ( 𝐺 ∈ Mnd → ( SubMnd ‘ 𝐺 ) ∈ ( ACS ‘ 𝐵 ) ) |
| 22 | 20 21 | syl | ⊢ ( 𝐺 ∈ Grp → ( SubMnd ‘ 𝐺 ) ∈ ( ACS ‘ 𝐵 ) ) |
| 23 | 1 2 | grpinvcl | ⊢ ( ( 𝐺 ∈ Grp ∧ 𝑥 ∈ 𝐵 ) → ( ( invg ‘ 𝐺 ) ‘ 𝑥 ) ∈ 𝐵 ) |
| 24 | 23 | ralrimiva | ⊢ ( 𝐺 ∈ Grp → ∀ 𝑥 ∈ 𝐵 ( ( invg ‘ 𝐺 ) ‘ 𝑥 ) ∈ 𝐵 ) |
| 25 | acsfn1 | ⊢ ( ( 𝐵 ∈ V ∧ ∀ 𝑥 ∈ 𝐵 ( ( invg ‘ 𝐺 ) ‘ 𝑥 ) ∈ 𝐵 ) → { 𝑦 ∈ 𝒫 𝐵 ∣ ∀ 𝑥 ∈ 𝑦 ( ( invg ‘ 𝐺 ) ‘ 𝑥 ) ∈ 𝑦 } ∈ ( ACS ‘ 𝐵 ) ) | |
| 26 | 17 24 25 | sylancr | ⊢ ( 𝐺 ∈ Grp → { 𝑦 ∈ 𝒫 𝐵 ∣ ∀ 𝑥 ∈ 𝑦 ( ( invg ‘ 𝐺 ) ‘ 𝑥 ) ∈ 𝑦 } ∈ ( ACS ‘ 𝐵 ) ) |
| 27 | mreincl | ⊢ ( ( ( ACS ‘ 𝐵 ) ∈ ( Moore ‘ 𝒫 𝐵 ) ∧ ( SubMnd ‘ 𝐺 ) ∈ ( ACS ‘ 𝐵 ) ∧ { 𝑦 ∈ 𝒫 𝐵 ∣ ∀ 𝑥 ∈ 𝑦 ( ( invg ‘ 𝐺 ) ‘ 𝑥 ) ∈ 𝑦 } ∈ ( ACS ‘ 𝐵 ) ) → ( ( SubMnd ‘ 𝐺 ) ∩ { 𝑦 ∈ 𝒫 𝐵 ∣ ∀ 𝑥 ∈ 𝑦 ( ( invg ‘ 𝐺 ) ‘ 𝑥 ) ∈ 𝑦 } ) ∈ ( ACS ‘ 𝐵 ) ) | |
| 28 | 19 22 26 27 | syl3anc | ⊢ ( 𝐺 ∈ Grp → ( ( SubMnd ‘ 𝐺 ) ∩ { 𝑦 ∈ 𝒫 𝐵 ∣ ∀ 𝑥 ∈ 𝑦 ( ( invg ‘ 𝐺 ) ‘ 𝑥 ) ∈ 𝑦 } ) ∈ ( ACS ‘ 𝐵 ) ) |
| 29 | 16 28 | eqeltrd | ⊢ ( 𝐺 ∈ Grp → ( SubGrp ‘ 𝐺 ) ∈ ( ACS ‘ 𝐵 ) ) |