This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The least upper bound property of subgroup sum. (Contributed by NM, 6-Feb-2014) (Revised by Mario Carneiro, 21-Jun-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | lsmub1.p | ⊢ ⊕ = ( LSSum ‘ 𝐺 ) | |
| Assertion | lsmlub | ⊢ ( ( 𝑆 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝑇 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝑈 ∈ ( SubGrp ‘ 𝐺 ) ) → ( ( 𝑆 ⊆ 𝑈 ∧ 𝑇 ⊆ 𝑈 ) ↔ ( 𝑆 ⊕ 𝑇 ) ⊆ 𝑈 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | lsmub1.p | ⊢ ⊕ = ( LSSum ‘ 𝐺 ) | |
| 2 | simp3 | ⊢ ( ( 𝑆 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝑇 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝑈 ∈ ( SubGrp ‘ 𝐺 ) ) → 𝑈 ∈ ( SubGrp ‘ 𝐺 ) ) | |
| 3 | 1 | lsmless12 | ⊢ ( ( ( 𝑈 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝑈 ∈ ( SubGrp ‘ 𝐺 ) ) ∧ ( 𝑆 ⊆ 𝑈 ∧ 𝑇 ⊆ 𝑈 ) ) → ( 𝑆 ⊕ 𝑇 ) ⊆ ( 𝑈 ⊕ 𝑈 ) ) |
| 4 | 3 | ex | ⊢ ( ( 𝑈 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝑈 ∈ ( SubGrp ‘ 𝐺 ) ) → ( ( 𝑆 ⊆ 𝑈 ∧ 𝑇 ⊆ 𝑈 ) → ( 𝑆 ⊕ 𝑇 ) ⊆ ( 𝑈 ⊕ 𝑈 ) ) ) |
| 5 | 2 2 4 | syl2anc | ⊢ ( ( 𝑆 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝑇 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝑈 ∈ ( SubGrp ‘ 𝐺 ) ) → ( ( 𝑆 ⊆ 𝑈 ∧ 𝑇 ⊆ 𝑈 ) → ( 𝑆 ⊕ 𝑇 ) ⊆ ( 𝑈 ⊕ 𝑈 ) ) ) |
| 6 | 1 | lsmidm | ⊢ ( 𝑈 ∈ ( SubGrp ‘ 𝐺 ) → ( 𝑈 ⊕ 𝑈 ) = 𝑈 ) |
| 7 | 6 | 3ad2ant3 | ⊢ ( ( 𝑆 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝑇 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝑈 ∈ ( SubGrp ‘ 𝐺 ) ) → ( 𝑈 ⊕ 𝑈 ) = 𝑈 ) |
| 8 | 7 | sseq2d | ⊢ ( ( 𝑆 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝑇 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝑈 ∈ ( SubGrp ‘ 𝐺 ) ) → ( ( 𝑆 ⊕ 𝑇 ) ⊆ ( 𝑈 ⊕ 𝑈 ) ↔ ( 𝑆 ⊕ 𝑇 ) ⊆ 𝑈 ) ) |
| 9 | 5 8 | sylibd | ⊢ ( ( 𝑆 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝑇 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝑈 ∈ ( SubGrp ‘ 𝐺 ) ) → ( ( 𝑆 ⊆ 𝑈 ∧ 𝑇 ⊆ 𝑈 ) → ( 𝑆 ⊕ 𝑇 ) ⊆ 𝑈 ) ) |
| 10 | 1 | lsmub1 | ⊢ ( ( 𝑆 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝑇 ∈ ( SubGrp ‘ 𝐺 ) ) → 𝑆 ⊆ ( 𝑆 ⊕ 𝑇 ) ) |
| 11 | 10 | 3adant3 | ⊢ ( ( 𝑆 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝑇 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝑈 ∈ ( SubGrp ‘ 𝐺 ) ) → 𝑆 ⊆ ( 𝑆 ⊕ 𝑇 ) ) |
| 12 | sstr2 | ⊢ ( 𝑆 ⊆ ( 𝑆 ⊕ 𝑇 ) → ( ( 𝑆 ⊕ 𝑇 ) ⊆ 𝑈 → 𝑆 ⊆ 𝑈 ) ) | |
| 13 | 11 12 | syl | ⊢ ( ( 𝑆 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝑇 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝑈 ∈ ( SubGrp ‘ 𝐺 ) ) → ( ( 𝑆 ⊕ 𝑇 ) ⊆ 𝑈 → 𝑆 ⊆ 𝑈 ) ) |
| 14 | 1 | lsmub2 | ⊢ ( ( 𝑆 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝑇 ∈ ( SubGrp ‘ 𝐺 ) ) → 𝑇 ⊆ ( 𝑆 ⊕ 𝑇 ) ) |
| 15 | 14 | 3adant3 | ⊢ ( ( 𝑆 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝑇 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝑈 ∈ ( SubGrp ‘ 𝐺 ) ) → 𝑇 ⊆ ( 𝑆 ⊕ 𝑇 ) ) |
| 16 | sstr2 | ⊢ ( 𝑇 ⊆ ( 𝑆 ⊕ 𝑇 ) → ( ( 𝑆 ⊕ 𝑇 ) ⊆ 𝑈 → 𝑇 ⊆ 𝑈 ) ) | |
| 17 | 15 16 | syl | ⊢ ( ( 𝑆 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝑇 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝑈 ∈ ( SubGrp ‘ 𝐺 ) ) → ( ( 𝑆 ⊕ 𝑇 ) ⊆ 𝑈 → 𝑇 ⊆ 𝑈 ) ) |
| 18 | 13 17 | jcad | ⊢ ( ( 𝑆 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝑇 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝑈 ∈ ( SubGrp ‘ 𝐺 ) ) → ( ( 𝑆 ⊕ 𝑇 ) ⊆ 𝑈 → ( 𝑆 ⊆ 𝑈 ∧ 𝑇 ⊆ 𝑈 ) ) ) |
| 19 | 9 18 | impbid | ⊢ ( ( 𝑆 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝑇 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝑈 ∈ ( SubGrp ‘ 𝐺 ) ) → ( ( 𝑆 ⊆ 𝑈 ∧ 𝑇 ⊆ 𝑈 ) ↔ ( 𝑆 ⊕ 𝑇 ) ⊆ 𝑈 ) ) |