This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Commute the "subgroups commute" predicate. (Contributed by Mario Carneiro, 21-Apr-2016)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | cntzrecd.z | ⊢ 𝑍 = ( Cntz ‘ 𝐺 ) | |
| cntzrecd.t | ⊢ ( 𝜑 → 𝑇 ∈ ( SubGrp ‘ 𝐺 ) ) | ||
| cntzrecd.u | ⊢ ( 𝜑 → 𝑈 ∈ ( SubGrp ‘ 𝐺 ) ) | ||
| cntzrecd.s | ⊢ ( 𝜑 → 𝑇 ⊆ ( 𝑍 ‘ 𝑈 ) ) | ||
| Assertion | cntzrecd | ⊢ ( 𝜑 → 𝑈 ⊆ ( 𝑍 ‘ 𝑇 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cntzrecd.z | ⊢ 𝑍 = ( Cntz ‘ 𝐺 ) | |
| 2 | cntzrecd.t | ⊢ ( 𝜑 → 𝑇 ∈ ( SubGrp ‘ 𝐺 ) ) | |
| 3 | cntzrecd.u | ⊢ ( 𝜑 → 𝑈 ∈ ( SubGrp ‘ 𝐺 ) ) | |
| 4 | cntzrecd.s | ⊢ ( 𝜑 → 𝑇 ⊆ ( 𝑍 ‘ 𝑈 ) ) | |
| 5 | eqid | ⊢ ( Base ‘ 𝐺 ) = ( Base ‘ 𝐺 ) | |
| 6 | 5 | subgss | ⊢ ( 𝑇 ∈ ( SubGrp ‘ 𝐺 ) → 𝑇 ⊆ ( Base ‘ 𝐺 ) ) |
| 7 | 5 | subgss | ⊢ ( 𝑈 ∈ ( SubGrp ‘ 𝐺 ) → 𝑈 ⊆ ( Base ‘ 𝐺 ) ) |
| 8 | 5 1 | cntzrec | ⊢ ( ( 𝑇 ⊆ ( Base ‘ 𝐺 ) ∧ 𝑈 ⊆ ( Base ‘ 𝐺 ) ) → ( 𝑇 ⊆ ( 𝑍 ‘ 𝑈 ) ↔ 𝑈 ⊆ ( 𝑍 ‘ 𝑇 ) ) ) |
| 9 | 6 7 8 | syl2an | ⊢ ( ( 𝑇 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝑈 ∈ ( SubGrp ‘ 𝐺 ) ) → ( 𝑇 ⊆ ( 𝑍 ‘ 𝑈 ) ↔ 𝑈 ⊆ ( 𝑍 ‘ 𝑇 ) ) ) |
| 10 | 2 3 9 | syl2anc | ⊢ ( 𝜑 → ( 𝑇 ⊆ ( 𝑍 ‘ 𝑈 ) ↔ 𝑈 ⊆ ( 𝑍 ‘ 𝑇 ) ) ) |
| 11 | 4 10 | mpbid | ⊢ ( 𝜑 → 𝑈 ⊆ ( 𝑍 ‘ 𝑇 ) ) |