This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The sum of two commuting subgroups is a subgroup. (Contributed by Mario Carneiro, 19-Apr-2016)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | lsmsubg.p | ⊢ ⊕ = ( LSSum ‘ 𝐺 ) | |
| lsmsubg.z | ⊢ 𝑍 = ( Cntz ‘ 𝐺 ) | ||
| Assertion | lsmsubg | ⊢ ( ( 𝑇 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝑈 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝑇 ⊆ ( 𝑍 ‘ 𝑈 ) ) → ( 𝑇 ⊕ 𝑈 ) ∈ ( SubGrp ‘ 𝐺 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | lsmsubg.p | ⊢ ⊕ = ( LSSum ‘ 𝐺 ) | |
| 2 | lsmsubg.z | ⊢ 𝑍 = ( Cntz ‘ 𝐺 ) | |
| 3 | simp1 | ⊢ ( ( 𝑇 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝑈 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝑇 ⊆ ( 𝑍 ‘ 𝑈 ) ) → 𝑇 ∈ ( SubGrp ‘ 𝐺 ) ) | |
| 4 | subgsubm | ⊢ ( 𝑇 ∈ ( SubGrp ‘ 𝐺 ) → 𝑇 ∈ ( SubMnd ‘ 𝐺 ) ) | |
| 5 | 3 4 | syl | ⊢ ( ( 𝑇 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝑈 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝑇 ⊆ ( 𝑍 ‘ 𝑈 ) ) → 𝑇 ∈ ( SubMnd ‘ 𝐺 ) ) |
| 6 | simp2 | ⊢ ( ( 𝑇 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝑈 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝑇 ⊆ ( 𝑍 ‘ 𝑈 ) ) → 𝑈 ∈ ( SubGrp ‘ 𝐺 ) ) | |
| 7 | subgsubm | ⊢ ( 𝑈 ∈ ( SubGrp ‘ 𝐺 ) → 𝑈 ∈ ( SubMnd ‘ 𝐺 ) ) | |
| 8 | 6 7 | syl | ⊢ ( ( 𝑇 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝑈 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝑇 ⊆ ( 𝑍 ‘ 𝑈 ) ) → 𝑈 ∈ ( SubMnd ‘ 𝐺 ) ) |
| 9 | simp3 | ⊢ ( ( 𝑇 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝑈 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝑇 ⊆ ( 𝑍 ‘ 𝑈 ) ) → 𝑇 ⊆ ( 𝑍 ‘ 𝑈 ) ) | |
| 10 | 1 2 | lsmsubm | ⊢ ( ( 𝑇 ∈ ( SubMnd ‘ 𝐺 ) ∧ 𝑈 ∈ ( SubMnd ‘ 𝐺 ) ∧ 𝑇 ⊆ ( 𝑍 ‘ 𝑈 ) ) → ( 𝑇 ⊕ 𝑈 ) ∈ ( SubMnd ‘ 𝐺 ) ) |
| 11 | 5 8 9 10 | syl3anc | ⊢ ( ( 𝑇 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝑈 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝑇 ⊆ ( 𝑍 ‘ 𝑈 ) ) → ( 𝑇 ⊕ 𝑈 ) ∈ ( SubMnd ‘ 𝐺 ) ) |
| 12 | eqid | ⊢ ( +g ‘ 𝐺 ) = ( +g ‘ 𝐺 ) | |
| 13 | 12 1 | lsmelval | ⊢ ( ( 𝑇 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝑈 ∈ ( SubGrp ‘ 𝐺 ) ) → ( 𝑥 ∈ ( 𝑇 ⊕ 𝑈 ) ↔ ∃ 𝑎 ∈ 𝑇 ∃ 𝑏 ∈ 𝑈 𝑥 = ( 𝑎 ( +g ‘ 𝐺 ) 𝑏 ) ) ) |
| 14 | 13 | 3adant3 | ⊢ ( ( 𝑇 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝑈 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝑇 ⊆ ( 𝑍 ‘ 𝑈 ) ) → ( 𝑥 ∈ ( 𝑇 ⊕ 𝑈 ) ↔ ∃ 𝑎 ∈ 𝑇 ∃ 𝑏 ∈ 𝑈 𝑥 = ( 𝑎 ( +g ‘ 𝐺 ) 𝑏 ) ) ) |
| 15 | 3 | adantr | ⊢ ( ( ( 𝑇 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝑈 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝑇 ⊆ ( 𝑍 ‘ 𝑈 ) ) ∧ ( 𝑎 ∈ 𝑇 ∧ 𝑏 ∈ 𝑈 ) ) → 𝑇 ∈ ( SubGrp ‘ 𝐺 ) ) |
| 16 | subgrcl | ⊢ ( 𝑇 ∈ ( SubGrp ‘ 𝐺 ) → 𝐺 ∈ Grp ) | |
| 17 | 15 16 | syl | ⊢ ( ( ( 𝑇 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝑈 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝑇 ⊆ ( 𝑍 ‘ 𝑈 ) ) ∧ ( 𝑎 ∈ 𝑇 ∧ 𝑏 ∈ 𝑈 ) ) → 𝐺 ∈ Grp ) |
| 18 | eqid | ⊢ ( Base ‘ 𝐺 ) = ( Base ‘ 𝐺 ) | |
| 19 | 18 | subgss | ⊢ ( 𝑇 ∈ ( SubGrp ‘ 𝐺 ) → 𝑇 ⊆ ( Base ‘ 𝐺 ) ) |
| 20 | 15 19 | syl | ⊢ ( ( ( 𝑇 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝑈 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝑇 ⊆ ( 𝑍 ‘ 𝑈 ) ) ∧ ( 𝑎 ∈ 𝑇 ∧ 𝑏 ∈ 𝑈 ) ) → 𝑇 ⊆ ( Base ‘ 𝐺 ) ) |
| 21 | simprl | ⊢ ( ( ( 𝑇 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝑈 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝑇 ⊆ ( 𝑍 ‘ 𝑈 ) ) ∧ ( 𝑎 ∈ 𝑇 ∧ 𝑏 ∈ 𝑈 ) ) → 𝑎 ∈ 𝑇 ) | |
| 22 | 20 21 | sseldd | ⊢ ( ( ( 𝑇 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝑈 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝑇 ⊆ ( 𝑍 ‘ 𝑈 ) ) ∧ ( 𝑎 ∈ 𝑇 ∧ 𝑏 ∈ 𝑈 ) ) → 𝑎 ∈ ( Base ‘ 𝐺 ) ) |
| 23 | 6 | adantr | ⊢ ( ( ( 𝑇 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝑈 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝑇 ⊆ ( 𝑍 ‘ 𝑈 ) ) ∧ ( 𝑎 ∈ 𝑇 ∧ 𝑏 ∈ 𝑈 ) ) → 𝑈 ∈ ( SubGrp ‘ 𝐺 ) ) |
| 24 | 18 | subgss | ⊢ ( 𝑈 ∈ ( SubGrp ‘ 𝐺 ) → 𝑈 ⊆ ( Base ‘ 𝐺 ) ) |
| 25 | 23 24 | syl | ⊢ ( ( ( 𝑇 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝑈 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝑇 ⊆ ( 𝑍 ‘ 𝑈 ) ) ∧ ( 𝑎 ∈ 𝑇 ∧ 𝑏 ∈ 𝑈 ) ) → 𝑈 ⊆ ( Base ‘ 𝐺 ) ) |
| 26 | simprr | ⊢ ( ( ( 𝑇 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝑈 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝑇 ⊆ ( 𝑍 ‘ 𝑈 ) ) ∧ ( 𝑎 ∈ 𝑇 ∧ 𝑏 ∈ 𝑈 ) ) → 𝑏 ∈ 𝑈 ) | |
| 27 | 25 26 | sseldd | ⊢ ( ( ( 𝑇 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝑈 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝑇 ⊆ ( 𝑍 ‘ 𝑈 ) ) ∧ ( 𝑎 ∈ 𝑇 ∧ 𝑏 ∈ 𝑈 ) ) → 𝑏 ∈ ( Base ‘ 𝐺 ) ) |
| 28 | eqid | ⊢ ( invg ‘ 𝐺 ) = ( invg ‘ 𝐺 ) | |
| 29 | 18 12 28 | grpinvadd | ⊢ ( ( 𝐺 ∈ Grp ∧ 𝑎 ∈ ( Base ‘ 𝐺 ) ∧ 𝑏 ∈ ( Base ‘ 𝐺 ) ) → ( ( invg ‘ 𝐺 ) ‘ ( 𝑎 ( +g ‘ 𝐺 ) 𝑏 ) ) = ( ( ( invg ‘ 𝐺 ) ‘ 𝑏 ) ( +g ‘ 𝐺 ) ( ( invg ‘ 𝐺 ) ‘ 𝑎 ) ) ) |
| 30 | 17 22 27 29 | syl3anc | ⊢ ( ( ( 𝑇 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝑈 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝑇 ⊆ ( 𝑍 ‘ 𝑈 ) ) ∧ ( 𝑎 ∈ 𝑇 ∧ 𝑏 ∈ 𝑈 ) ) → ( ( invg ‘ 𝐺 ) ‘ ( 𝑎 ( +g ‘ 𝐺 ) 𝑏 ) ) = ( ( ( invg ‘ 𝐺 ) ‘ 𝑏 ) ( +g ‘ 𝐺 ) ( ( invg ‘ 𝐺 ) ‘ 𝑎 ) ) ) |
| 31 | 9 | adantr | ⊢ ( ( ( 𝑇 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝑈 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝑇 ⊆ ( 𝑍 ‘ 𝑈 ) ) ∧ ( 𝑎 ∈ 𝑇 ∧ 𝑏 ∈ 𝑈 ) ) → 𝑇 ⊆ ( 𝑍 ‘ 𝑈 ) ) |
| 32 | 28 | subginvcl | ⊢ ( ( 𝑇 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝑎 ∈ 𝑇 ) → ( ( invg ‘ 𝐺 ) ‘ 𝑎 ) ∈ 𝑇 ) |
| 33 | 15 21 32 | syl2anc | ⊢ ( ( ( 𝑇 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝑈 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝑇 ⊆ ( 𝑍 ‘ 𝑈 ) ) ∧ ( 𝑎 ∈ 𝑇 ∧ 𝑏 ∈ 𝑈 ) ) → ( ( invg ‘ 𝐺 ) ‘ 𝑎 ) ∈ 𝑇 ) |
| 34 | 31 33 | sseldd | ⊢ ( ( ( 𝑇 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝑈 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝑇 ⊆ ( 𝑍 ‘ 𝑈 ) ) ∧ ( 𝑎 ∈ 𝑇 ∧ 𝑏 ∈ 𝑈 ) ) → ( ( invg ‘ 𝐺 ) ‘ 𝑎 ) ∈ ( 𝑍 ‘ 𝑈 ) ) |
| 35 | 28 | subginvcl | ⊢ ( ( 𝑈 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝑏 ∈ 𝑈 ) → ( ( invg ‘ 𝐺 ) ‘ 𝑏 ) ∈ 𝑈 ) |
| 36 | 23 26 35 | syl2anc | ⊢ ( ( ( 𝑇 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝑈 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝑇 ⊆ ( 𝑍 ‘ 𝑈 ) ) ∧ ( 𝑎 ∈ 𝑇 ∧ 𝑏 ∈ 𝑈 ) ) → ( ( invg ‘ 𝐺 ) ‘ 𝑏 ) ∈ 𝑈 ) |
| 37 | 12 2 | cntzi | ⊢ ( ( ( ( invg ‘ 𝐺 ) ‘ 𝑎 ) ∈ ( 𝑍 ‘ 𝑈 ) ∧ ( ( invg ‘ 𝐺 ) ‘ 𝑏 ) ∈ 𝑈 ) → ( ( ( invg ‘ 𝐺 ) ‘ 𝑎 ) ( +g ‘ 𝐺 ) ( ( invg ‘ 𝐺 ) ‘ 𝑏 ) ) = ( ( ( invg ‘ 𝐺 ) ‘ 𝑏 ) ( +g ‘ 𝐺 ) ( ( invg ‘ 𝐺 ) ‘ 𝑎 ) ) ) |
| 38 | 34 36 37 | syl2anc | ⊢ ( ( ( 𝑇 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝑈 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝑇 ⊆ ( 𝑍 ‘ 𝑈 ) ) ∧ ( 𝑎 ∈ 𝑇 ∧ 𝑏 ∈ 𝑈 ) ) → ( ( ( invg ‘ 𝐺 ) ‘ 𝑎 ) ( +g ‘ 𝐺 ) ( ( invg ‘ 𝐺 ) ‘ 𝑏 ) ) = ( ( ( invg ‘ 𝐺 ) ‘ 𝑏 ) ( +g ‘ 𝐺 ) ( ( invg ‘ 𝐺 ) ‘ 𝑎 ) ) ) |
| 39 | 30 38 | eqtr4d | ⊢ ( ( ( 𝑇 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝑈 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝑇 ⊆ ( 𝑍 ‘ 𝑈 ) ) ∧ ( 𝑎 ∈ 𝑇 ∧ 𝑏 ∈ 𝑈 ) ) → ( ( invg ‘ 𝐺 ) ‘ ( 𝑎 ( +g ‘ 𝐺 ) 𝑏 ) ) = ( ( ( invg ‘ 𝐺 ) ‘ 𝑎 ) ( +g ‘ 𝐺 ) ( ( invg ‘ 𝐺 ) ‘ 𝑏 ) ) ) |
| 40 | 12 1 | lsmelvali | ⊢ ( ( ( 𝑇 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝑈 ∈ ( SubGrp ‘ 𝐺 ) ) ∧ ( ( ( invg ‘ 𝐺 ) ‘ 𝑎 ) ∈ 𝑇 ∧ ( ( invg ‘ 𝐺 ) ‘ 𝑏 ) ∈ 𝑈 ) ) → ( ( ( invg ‘ 𝐺 ) ‘ 𝑎 ) ( +g ‘ 𝐺 ) ( ( invg ‘ 𝐺 ) ‘ 𝑏 ) ) ∈ ( 𝑇 ⊕ 𝑈 ) ) |
| 41 | 15 23 33 36 40 | syl22anc | ⊢ ( ( ( 𝑇 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝑈 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝑇 ⊆ ( 𝑍 ‘ 𝑈 ) ) ∧ ( 𝑎 ∈ 𝑇 ∧ 𝑏 ∈ 𝑈 ) ) → ( ( ( invg ‘ 𝐺 ) ‘ 𝑎 ) ( +g ‘ 𝐺 ) ( ( invg ‘ 𝐺 ) ‘ 𝑏 ) ) ∈ ( 𝑇 ⊕ 𝑈 ) ) |
| 42 | 39 41 | eqeltrd | ⊢ ( ( ( 𝑇 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝑈 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝑇 ⊆ ( 𝑍 ‘ 𝑈 ) ) ∧ ( 𝑎 ∈ 𝑇 ∧ 𝑏 ∈ 𝑈 ) ) → ( ( invg ‘ 𝐺 ) ‘ ( 𝑎 ( +g ‘ 𝐺 ) 𝑏 ) ) ∈ ( 𝑇 ⊕ 𝑈 ) ) |
| 43 | fveq2 | ⊢ ( 𝑥 = ( 𝑎 ( +g ‘ 𝐺 ) 𝑏 ) → ( ( invg ‘ 𝐺 ) ‘ 𝑥 ) = ( ( invg ‘ 𝐺 ) ‘ ( 𝑎 ( +g ‘ 𝐺 ) 𝑏 ) ) ) | |
| 44 | 43 | eleq1d | ⊢ ( 𝑥 = ( 𝑎 ( +g ‘ 𝐺 ) 𝑏 ) → ( ( ( invg ‘ 𝐺 ) ‘ 𝑥 ) ∈ ( 𝑇 ⊕ 𝑈 ) ↔ ( ( invg ‘ 𝐺 ) ‘ ( 𝑎 ( +g ‘ 𝐺 ) 𝑏 ) ) ∈ ( 𝑇 ⊕ 𝑈 ) ) ) |
| 45 | 42 44 | syl5ibrcom | ⊢ ( ( ( 𝑇 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝑈 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝑇 ⊆ ( 𝑍 ‘ 𝑈 ) ) ∧ ( 𝑎 ∈ 𝑇 ∧ 𝑏 ∈ 𝑈 ) ) → ( 𝑥 = ( 𝑎 ( +g ‘ 𝐺 ) 𝑏 ) → ( ( invg ‘ 𝐺 ) ‘ 𝑥 ) ∈ ( 𝑇 ⊕ 𝑈 ) ) ) |
| 46 | 45 | rexlimdvva | ⊢ ( ( 𝑇 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝑈 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝑇 ⊆ ( 𝑍 ‘ 𝑈 ) ) → ( ∃ 𝑎 ∈ 𝑇 ∃ 𝑏 ∈ 𝑈 𝑥 = ( 𝑎 ( +g ‘ 𝐺 ) 𝑏 ) → ( ( invg ‘ 𝐺 ) ‘ 𝑥 ) ∈ ( 𝑇 ⊕ 𝑈 ) ) ) |
| 47 | 14 46 | sylbid | ⊢ ( ( 𝑇 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝑈 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝑇 ⊆ ( 𝑍 ‘ 𝑈 ) ) → ( 𝑥 ∈ ( 𝑇 ⊕ 𝑈 ) → ( ( invg ‘ 𝐺 ) ‘ 𝑥 ) ∈ ( 𝑇 ⊕ 𝑈 ) ) ) |
| 48 | 47 | ralrimiv | ⊢ ( ( 𝑇 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝑈 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝑇 ⊆ ( 𝑍 ‘ 𝑈 ) ) → ∀ 𝑥 ∈ ( 𝑇 ⊕ 𝑈 ) ( ( invg ‘ 𝐺 ) ‘ 𝑥 ) ∈ ( 𝑇 ⊕ 𝑈 ) ) |
| 49 | 3 16 | syl | ⊢ ( ( 𝑇 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝑈 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝑇 ⊆ ( 𝑍 ‘ 𝑈 ) ) → 𝐺 ∈ Grp ) |
| 50 | 28 | issubg3 | ⊢ ( 𝐺 ∈ Grp → ( ( 𝑇 ⊕ 𝑈 ) ∈ ( SubGrp ‘ 𝐺 ) ↔ ( ( 𝑇 ⊕ 𝑈 ) ∈ ( SubMnd ‘ 𝐺 ) ∧ ∀ 𝑥 ∈ ( 𝑇 ⊕ 𝑈 ) ( ( invg ‘ 𝐺 ) ‘ 𝑥 ) ∈ ( 𝑇 ⊕ 𝑈 ) ) ) ) |
| 51 | 49 50 | syl | ⊢ ( ( 𝑇 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝑈 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝑇 ⊆ ( 𝑍 ‘ 𝑈 ) ) → ( ( 𝑇 ⊕ 𝑈 ) ∈ ( SubGrp ‘ 𝐺 ) ↔ ( ( 𝑇 ⊕ 𝑈 ) ∈ ( SubMnd ‘ 𝐺 ) ∧ ∀ 𝑥 ∈ ( 𝑇 ⊕ 𝑈 ) ( ( invg ‘ 𝐺 ) ‘ 𝑥 ) ∈ ( 𝑇 ⊕ 𝑈 ) ) ) ) |
| 52 | 11 48 51 | mpbir2and | ⊢ ( ( 𝑇 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝑈 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝑇 ⊆ ( 𝑍 ‘ 𝑈 ) ) → ( 𝑇 ⊕ 𝑈 ) ∈ ( SubGrp ‘ 𝐺 ) ) |