This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Each factor is a subset of the internal direct product. (Contributed by Mario Carneiro, 25-Apr-2016)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | dprdub.1 | ⊢ ( 𝜑 → 𝐺 dom DProd 𝑆 ) | |
| dprdub.2 | ⊢ ( 𝜑 → dom 𝑆 = 𝐼 ) | ||
| dprdub.3 | ⊢ ( 𝜑 → 𝑋 ∈ 𝐼 ) | ||
| Assertion | dprdub | ⊢ ( 𝜑 → ( 𝑆 ‘ 𝑋 ) ⊆ ( 𝐺 DProd 𝑆 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dprdub.1 | ⊢ ( 𝜑 → 𝐺 dom DProd 𝑆 ) | |
| 2 | dprdub.2 | ⊢ ( 𝜑 → dom 𝑆 = 𝐼 ) | |
| 3 | dprdub.3 | ⊢ ( 𝜑 → 𝑋 ∈ 𝐼 ) | |
| 4 | eqid | ⊢ ( 0g ‘ 𝐺 ) = ( 0g ‘ 𝐺 ) | |
| 5 | eqid | ⊢ { ℎ ∈ X 𝑖 ∈ 𝐼 ( 𝑆 ‘ 𝑖 ) ∣ ℎ finSupp ( 0g ‘ 𝐺 ) } = { ℎ ∈ X 𝑖 ∈ 𝐼 ( 𝑆 ‘ 𝑖 ) ∣ ℎ finSupp ( 0g ‘ 𝐺 ) } | |
| 6 | 1 | adantr | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝑆 ‘ 𝑋 ) ) → 𝐺 dom DProd 𝑆 ) |
| 7 | 2 | adantr | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝑆 ‘ 𝑋 ) ) → dom 𝑆 = 𝐼 ) |
| 8 | 3 | adantr | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝑆 ‘ 𝑋 ) ) → 𝑋 ∈ 𝐼 ) |
| 9 | simpr | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝑆 ‘ 𝑋 ) ) → 𝑥 ∈ ( 𝑆 ‘ 𝑋 ) ) | |
| 10 | eqid | ⊢ ( 𝑛 ∈ 𝐼 ↦ if ( 𝑛 = 𝑋 , 𝑥 , ( 0g ‘ 𝐺 ) ) ) = ( 𝑛 ∈ 𝐼 ↦ if ( 𝑛 = 𝑋 , 𝑥 , ( 0g ‘ 𝐺 ) ) ) | |
| 11 | 4 5 6 7 8 9 10 | dprdfid | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝑆 ‘ 𝑋 ) ) → ( ( 𝑛 ∈ 𝐼 ↦ if ( 𝑛 = 𝑋 , 𝑥 , ( 0g ‘ 𝐺 ) ) ) ∈ { ℎ ∈ X 𝑖 ∈ 𝐼 ( 𝑆 ‘ 𝑖 ) ∣ ℎ finSupp ( 0g ‘ 𝐺 ) } ∧ ( 𝐺 Σg ( 𝑛 ∈ 𝐼 ↦ if ( 𝑛 = 𝑋 , 𝑥 , ( 0g ‘ 𝐺 ) ) ) ) = 𝑥 ) ) |
| 12 | 11 | simprd | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝑆 ‘ 𝑋 ) ) → ( 𝐺 Σg ( 𝑛 ∈ 𝐼 ↦ if ( 𝑛 = 𝑋 , 𝑥 , ( 0g ‘ 𝐺 ) ) ) ) = 𝑥 ) |
| 13 | 11 | simpld | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝑆 ‘ 𝑋 ) ) → ( 𝑛 ∈ 𝐼 ↦ if ( 𝑛 = 𝑋 , 𝑥 , ( 0g ‘ 𝐺 ) ) ) ∈ { ℎ ∈ X 𝑖 ∈ 𝐼 ( 𝑆 ‘ 𝑖 ) ∣ ℎ finSupp ( 0g ‘ 𝐺 ) } ) |
| 14 | 4 5 6 7 13 | eldprdi | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝑆 ‘ 𝑋 ) ) → ( 𝐺 Σg ( 𝑛 ∈ 𝐼 ↦ if ( 𝑛 = 𝑋 , 𝑥 , ( 0g ‘ 𝐺 ) ) ) ) ∈ ( 𝐺 DProd 𝑆 ) ) |
| 15 | 12 14 | eqeltrrd | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝑆 ‘ 𝑋 ) ) → 𝑥 ∈ ( 𝐺 DProd 𝑆 ) ) |
| 16 | 15 | ex | ⊢ ( 𝜑 → ( 𝑥 ∈ ( 𝑆 ‘ 𝑋 ) → 𝑥 ∈ ( 𝐺 DProd 𝑆 ) ) ) |
| 17 | 16 | ssrdv | ⊢ ( 𝜑 → ( 𝑆 ‘ 𝑋 ) ⊆ ( 𝐺 DProd 𝑆 ) ) |