This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The internal direct product of a family of subgroups is a subset of the base. (Contributed by Mario Carneiro, 25-Apr-2016)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | dprdssv.b | ⊢ 𝐵 = ( Base ‘ 𝐺 ) | |
| Assertion | dprdssv | ⊢ ( 𝐺 DProd 𝑆 ) ⊆ 𝐵 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dprdssv.b | ⊢ 𝐵 = ( Base ‘ 𝐺 ) | |
| 2 | eqid | ⊢ dom 𝑆 = dom 𝑆 | |
| 3 | eqid | ⊢ ( 0g ‘ 𝐺 ) = ( 0g ‘ 𝐺 ) | |
| 4 | eqid | ⊢ { ℎ ∈ X 𝑖 ∈ dom 𝑆 ( 𝑆 ‘ 𝑖 ) ∣ ℎ finSupp ( 0g ‘ 𝐺 ) } = { ℎ ∈ X 𝑖 ∈ dom 𝑆 ( 𝑆 ‘ 𝑖 ) ∣ ℎ finSupp ( 0g ‘ 𝐺 ) } | |
| 5 | 3 4 | eldprd | ⊢ ( dom 𝑆 = dom 𝑆 → ( 𝑥 ∈ ( 𝐺 DProd 𝑆 ) ↔ ( 𝐺 dom DProd 𝑆 ∧ ∃ 𝑓 ∈ { ℎ ∈ X 𝑖 ∈ dom 𝑆 ( 𝑆 ‘ 𝑖 ) ∣ ℎ finSupp ( 0g ‘ 𝐺 ) } 𝑥 = ( 𝐺 Σg 𝑓 ) ) ) ) |
| 6 | 2 5 | ax-mp | ⊢ ( 𝑥 ∈ ( 𝐺 DProd 𝑆 ) ↔ ( 𝐺 dom DProd 𝑆 ∧ ∃ 𝑓 ∈ { ℎ ∈ X 𝑖 ∈ dom 𝑆 ( 𝑆 ‘ 𝑖 ) ∣ ℎ finSupp ( 0g ‘ 𝐺 ) } 𝑥 = ( 𝐺 Σg 𝑓 ) ) ) |
| 7 | eqid | ⊢ ( Cntz ‘ 𝐺 ) = ( Cntz ‘ 𝐺 ) | |
| 8 | dprdgrp | ⊢ ( 𝐺 dom DProd 𝑆 → 𝐺 ∈ Grp ) | |
| 9 | 8 | grpmndd | ⊢ ( 𝐺 dom DProd 𝑆 → 𝐺 ∈ Mnd ) |
| 10 | 9 | adantr | ⊢ ( ( 𝐺 dom DProd 𝑆 ∧ 𝑓 ∈ { ℎ ∈ X 𝑖 ∈ dom 𝑆 ( 𝑆 ‘ 𝑖 ) ∣ ℎ finSupp ( 0g ‘ 𝐺 ) } ) → 𝐺 ∈ Mnd ) |
| 11 | reldmdprd | ⊢ Rel dom DProd | |
| 12 | 11 | brrelex2i | ⊢ ( 𝐺 dom DProd 𝑆 → 𝑆 ∈ V ) |
| 13 | 12 | dmexd | ⊢ ( 𝐺 dom DProd 𝑆 → dom 𝑆 ∈ V ) |
| 14 | 13 | adantr | ⊢ ( ( 𝐺 dom DProd 𝑆 ∧ 𝑓 ∈ { ℎ ∈ X 𝑖 ∈ dom 𝑆 ( 𝑆 ‘ 𝑖 ) ∣ ℎ finSupp ( 0g ‘ 𝐺 ) } ) → dom 𝑆 ∈ V ) |
| 15 | simpl | ⊢ ( ( 𝐺 dom DProd 𝑆 ∧ 𝑓 ∈ { ℎ ∈ X 𝑖 ∈ dom 𝑆 ( 𝑆 ‘ 𝑖 ) ∣ ℎ finSupp ( 0g ‘ 𝐺 ) } ) → 𝐺 dom DProd 𝑆 ) | |
| 16 | eqidd | ⊢ ( ( 𝐺 dom DProd 𝑆 ∧ 𝑓 ∈ { ℎ ∈ X 𝑖 ∈ dom 𝑆 ( 𝑆 ‘ 𝑖 ) ∣ ℎ finSupp ( 0g ‘ 𝐺 ) } ) → dom 𝑆 = dom 𝑆 ) | |
| 17 | simpr | ⊢ ( ( 𝐺 dom DProd 𝑆 ∧ 𝑓 ∈ { ℎ ∈ X 𝑖 ∈ dom 𝑆 ( 𝑆 ‘ 𝑖 ) ∣ ℎ finSupp ( 0g ‘ 𝐺 ) } ) → 𝑓 ∈ { ℎ ∈ X 𝑖 ∈ dom 𝑆 ( 𝑆 ‘ 𝑖 ) ∣ ℎ finSupp ( 0g ‘ 𝐺 ) } ) | |
| 18 | 4 15 16 17 1 | dprdff | ⊢ ( ( 𝐺 dom DProd 𝑆 ∧ 𝑓 ∈ { ℎ ∈ X 𝑖 ∈ dom 𝑆 ( 𝑆 ‘ 𝑖 ) ∣ ℎ finSupp ( 0g ‘ 𝐺 ) } ) → 𝑓 : dom 𝑆 ⟶ 𝐵 ) |
| 19 | 4 15 16 17 7 | dprdfcntz | ⊢ ( ( 𝐺 dom DProd 𝑆 ∧ 𝑓 ∈ { ℎ ∈ X 𝑖 ∈ dom 𝑆 ( 𝑆 ‘ 𝑖 ) ∣ ℎ finSupp ( 0g ‘ 𝐺 ) } ) → ran 𝑓 ⊆ ( ( Cntz ‘ 𝐺 ) ‘ ran 𝑓 ) ) |
| 20 | 4 15 16 17 | dprdffsupp | ⊢ ( ( 𝐺 dom DProd 𝑆 ∧ 𝑓 ∈ { ℎ ∈ X 𝑖 ∈ dom 𝑆 ( 𝑆 ‘ 𝑖 ) ∣ ℎ finSupp ( 0g ‘ 𝐺 ) } ) → 𝑓 finSupp ( 0g ‘ 𝐺 ) ) |
| 21 | 1 3 7 10 14 18 19 20 | gsumzcl | ⊢ ( ( 𝐺 dom DProd 𝑆 ∧ 𝑓 ∈ { ℎ ∈ X 𝑖 ∈ dom 𝑆 ( 𝑆 ‘ 𝑖 ) ∣ ℎ finSupp ( 0g ‘ 𝐺 ) } ) → ( 𝐺 Σg 𝑓 ) ∈ 𝐵 ) |
| 22 | eleq1 | ⊢ ( 𝑥 = ( 𝐺 Σg 𝑓 ) → ( 𝑥 ∈ 𝐵 ↔ ( 𝐺 Σg 𝑓 ) ∈ 𝐵 ) ) | |
| 23 | 21 22 | syl5ibrcom | ⊢ ( ( 𝐺 dom DProd 𝑆 ∧ 𝑓 ∈ { ℎ ∈ X 𝑖 ∈ dom 𝑆 ( 𝑆 ‘ 𝑖 ) ∣ ℎ finSupp ( 0g ‘ 𝐺 ) } ) → ( 𝑥 = ( 𝐺 Σg 𝑓 ) → 𝑥 ∈ 𝐵 ) ) |
| 24 | 23 | rexlimdva | ⊢ ( 𝐺 dom DProd 𝑆 → ( ∃ 𝑓 ∈ { ℎ ∈ X 𝑖 ∈ dom 𝑆 ( 𝑆 ‘ 𝑖 ) ∣ ℎ finSupp ( 0g ‘ 𝐺 ) } 𝑥 = ( 𝐺 Σg 𝑓 ) → 𝑥 ∈ 𝐵 ) ) |
| 25 | 24 | imp | ⊢ ( ( 𝐺 dom DProd 𝑆 ∧ ∃ 𝑓 ∈ { ℎ ∈ X 𝑖 ∈ dom 𝑆 ( 𝑆 ‘ 𝑖 ) ∣ ℎ finSupp ( 0g ‘ 𝐺 ) } 𝑥 = ( 𝐺 Σg 𝑓 ) ) → 𝑥 ∈ 𝐵 ) |
| 26 | 6 25 | sylbi | ⊢ ( 𝑥 ∈ ( 𝐺 DProd 𝑆 ) → 𝑥 ∈ 𝐵 ) |
| 27 | 26 | ssriv | ⊢ ( 𝐺 DProd 𝑆 ) ⊆ 𝐵 |