This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The internal direct product of a family of subgroups is a subgroup. (Contributed by Mario Carneiro, 25-Apr-2016)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | dprdsubg | ⊢ ( 𝐺 dom DProd 𝑆 → ( 𝐺 DProd 𝑆 ) ∈ ( SubGrp ‘ 𝐺 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid | ⊢ ( Base ‘ 𝐺 ) = ( Base ‘ 𝐺 ) | |
| 2 | 1 | dprdssv | ⊢ ( 𝐺 DProd 𝑆 ) ⊆ ( Base ‘ 𝐺 ) |
| 3 | 2 | a1i | ⊢ ( 𝐺 dom DProd 𝑆 → ( 𝐺 DProd 𝑆 ) ⊆ ( Base ‘ 𝐺 ) ) |
| 4 | eqid | ⊢ ( 0g ‘ 𝐺 ) = ( 0g ‘ 𝐺 ) | |
| 5 | eqid | ⊢ { ℎ ∈ X 𝑖 ∈ dom 𝑆 ( 𝑆 ‘ 𝑖 ) ∣ ℎ finSupp ( 0g ‘ 𝐺 ) } = { ℎ ∈ X 𝑖 ∈ dom 𝑆 ( 𝑆 ‘ 𝑖 ) ∣ ℎ finSupp ( 0g ‘ 𝐺 ) } | |
| 6 | id | ⊢ ( 𝐺 dom DProd 𝑆 → 𝐺 dom DProd 𝑆 ) | |
| 7 | eqidd | ⊢ ( 𝐺 dom DProd 𝑆 → dom 𝑆 = dom 𝑆 ) | |
| 8 | fvex | ⊢ ( 0g ‘ 𝐺 ) ∈ V | |
| 9 | fnconstg | ⊢ ( ( 0g ‘ 𝐺 ) ∈ V → ( dom 𝑆 × { ( 0g ‘ 𝐺 ) } ) Fn dom 𝑆 ) | |
| 10 | 8 9 | mp1i | ⊢ ( 𝐺 dom DProd 𝑆 → ( dom 𝑆 × { ( 0g ‘ 𝐺 ) } ) Fn dom 𝑆 ) |
| 11 | 8 | fvconst2 | ⊢ ( 𝑘 ∈ dom 𝑆 → ( ( dom 𝑆 × { ( 0g ‘ 𝐺 ) } ) ‘ 𝑘 ) = ( 0g ‘ 𝐺 ) ) |
| 12 | 11 | adantl | ⊢ ( ( 𝐺 dom DProd 𝑆 ∧ 𝑘 ∈ dom 𝑆 ) → ( ( dom 𝑆 × { ( 0g ‘ 𝐺 ) } ) ‘ 𝑘 ) = ( 0g ‘ 𝐺 ) ) |
| 13 | dprdf | ⊢ ( 𝐺 dom DProd 𝑆 → 𝑆 : dom 𝑆 ⟶ ( SubGrp ‘ 𝐺 ) ) | |
| 14 | 13 | ffvelcdmda | ⊢ ( ( 𝐺 dom DProd 𝑆 ∧ 𝑘 ∈ dom 𝑆 ) → ( 𝑆 ‘ 𝑘 ) ∈ ( SubGrp ‘ 𝐺 ) ) |
| 15 | 4 | subg0cl | ⊢ ( ( 𝑆 ‘ 𝑘 ) ∈ ( SubGrp ‘ 𝐺 ) → ( 0g ‘ 𝐺 ) ∈ ( 𝑆 ‘ 𝑘 ) ) |
| 16 | 14 15 | syl | ⊢ ( ( 𝐺 dom DProd 𝑆 ∧ 𝑘 ∈ dom 𝑆 ) → ( 0g ‘ 𝐺 ) ∈ ( 𝑆 ‘ 𝑘 ) ) |
| 17 | 12 16 | eqeltrd | ⊢ ( ( 𝐺 dom DProd 𝑆 ∧ 𝑘 ∈ dom 𝑆 ) → ( ( dom 𝑆 × { ( 0g ‘ 𝐺 ) } ) ‘ 𝑘 ) ∈ ( 𝑆 ‘ 𝑘 ) ) |
| 18 | 17 | ralrimiva | ⊢ ( 𝐺 dom DProd 𝑆 → ∀ 𝑘 ∈ dom 𝑆 ( ( dom 𝑆 × { ( 0g ‘ 𝐺 ) } ) ‘ 𝑘 ) ∈ ( 𝑆 ‘ 𝑘 ) ) |
| 19 | df-nel | ⊢ ( dom 𝑆 ∉ V ↔ ¬ dom 𝑆 ∈ V ) | |
| 20 | dprddomprc | ⊢ ( dom 𝑆 ∉ V → ¬ 𝐺 dom DProd 𝑆 ) | |
| 21 | 19 20 | sylbir | ⊢ ( ¬ dom 𝑆 ∈ V → ¬ 𝐺 dom DProd 𝑆 ) |
| 22 | 21 | con4i | ⊢ ( 𝐺 dom DProd 𝑆 → dom 𝑆 ∈ V ) |
| 23 | 8 | a1i | ⊢ ( 𝐺 dom DProd 𝑆 → ( 0g ‘ 𝐺 ) ∈ V ) |
| 24 | 22 23 | fczfsuppd | ⊢ ( 𝐺 dom DProd 𝑆 → ( dom 𝑆 × { ( 0g ‘ 𝐺 ) } ) finSupp ( 0g ‘ 𝐺 ) ) |
| 25 | 5 6 7 | dprdw | ⊢ ( 𝐺 dom DProd 𝑆 → ( ( dom 𝑆 × { ( 0g ‘ 𝐺 ) } ) ∈ { ℎ ∈ X 𝑖 ∈ dom 𝑆 ( 𝑆 ‘ 𝑖 ) ∣ ℎ finSupp ( 0g ‘ 𝐺 ) } ↔ ( ( dom 𝑆 × { ( 0g ‘ 𝐺 ) } ) Fn dom 𝑆 ∧ ∀ 𝑘 ∈ dom 𝑆 ( ( dom 𝑆 × { ( 0g ‘ 𝐺 ) } ) ‘ 𝑘 ) ∈ ( 𝑆 ‘ 𝑘 ) ∧ ( dom 𝑆 × { ( 0g ‘ 𝐺 ) } ) finSupp ( 0g ‘ 𝐺 ) ) ) ) |
| 26 | 10 18 24 25 | mpbir3and | ⊢ ( 𝐺 dom DProd 𝑆 → ( dom 𝑆 × { ( 0g ‘ 𝐺 ) } ) ∈ { ℎ ∈ X 𝑖 ∈ dom 𝑆 ( 𝑆 ‘ 𝑖 ) ∣ ℎ finSupp ( 0g ‘ 𝐺 ) } ) |
| 27 | 4 5 6 7 26 | eldprdi | ⊢ ( 𝐺 dom DProd 𝑆 → ( 𝐺 Σg ( dom 𝑆 × { ( 0g ‘ 𝐺 ) } ) ) ∈ ( 𝐺 DProd 𝑆 ) ) |
| 28 | 27 | ne0d | ⊢ ( 𝐺 dom DProd 𝑆 → ( 𝐺 DProd 𝑆 ) ≠ ∅ ) |
| 29 | eqid | ⊢ dom 𝑆 = dom 𝑆 | |
| 30 | 4 5 | eldprd | ⊢ ( dom 𝑆 = dom 𝑆 → ( 𝑥 ∈ ( 𝐺 DProd 𝑆 ) ↔ ( 𝐺 dom DProd 𝑆 ∧ ∃ 𝑓 ∈ { ℎ ∈ X 𝑖 ∈ dom 𝑆 ( 𝑆 ‘ 𝑖 ) ∣ ℎ finSupp ( 0g ‘ 𝐺 ) } 𝑥 = ( 𝐺 Σg 𝑓 ) ) ) ) |
| 31 | 30 | baibd | ⊢ ( ( dom 𝑆 = dom 𝑆 ∧ 𝐺 dom DProd 𝑆 ) → ( 𝑥 ∈ ( 𝐺 DProd 𝑆 ) ↔ ∃ 𝑓 ∈ { ℎ ∈ X 𝑖 ∈ dom 𝑆 ( 𝑆 ‘ 𝑖 ) ∣ ℎ finSupp ( 0g ‘ 𝐺 ) } 𝑥 = ( 𝐺 Σg 𝑓 ) ) ) |
| 32 | 4 5 | eldprd | ⊢ ( dom 𝑆 = dom 𝑆 → ( 𝑦 ∈ ( 𝐺 DProd 𝑆 ) ↔ ( 𝐺 dom DProd 𝑆 ∧ ∃ 𝑔 ∈ { ℎ ∈ X 𝑖 ∈ dom 𝑆 ( 𝑆 ‘ 𝑖 ) ∣ ℎ finSupp ( 0g ‘ 𝐺 ) } 𝑦 = ( 𝐺 Σg 𝑔 ) ) ) ) |
| 33 | 32 | baibd | ⊢ ( ( dom 𝑆 = dom 𝑆 ∧ 𝐺 dom DProd 𝑆 ) → ( 𝑦 ∈ ( 𝐺 DProd 𝑆 ) ↔ ∃ 𝑔 ∈ { ℎ ∈ X 𝑖 ∈ dom 𝑆 ( 𝑆 ‘ 𝑖 ) ∣ ℎ finSupp ( 0g ‘ 𝐺 ) } 𝑦 = ( 𝐺 Σg 𝑔 ) ) ) |
| 34 | 31 33 | anbi12d | ⊢ ( ( dom 𝑆 = dom 𝑆 ∧ 𝐺 dom DProd 𝑆 ) → ( ( 𝑥 ∈ ( 𝐺 DProd 𝑆 ) ∧ 𝑦 ∈ ( 𝐺 DProd 𝑆 ) ) ↔ ( ∃ 𝑓 ∈ { ℎ ∈ X 𝑖 ∈ dom 𝑆 ( 𝑆 ‘ 𝑖 ) ∣ ℎ finSupp ( 0g ‘ 𝐺 ) } 𝑥 = ( 𝐺 Σg 𝑓 ) ∧ ∃ 𝑔 ∈ { ℎ ∈ X 𝑖 ∈ dom 𝑆 ( 𝑆 ‘ 𝑖 ) ∣ ℎ finSupp ( 0g ‘ 𝐺 ) } 𝑦 = ( 𝐺 Σg 𝑔 ) ) ) ) |
| 35 | 29 34 | mpan | ⊢ ( 𝐺 dom DProd 𝑆 → ( ( 𝑥 ∈ ( 𝐺 DProd 𝑆 ) ∧ 𝑦 ∈ ( 𝐺 DProd 𝑆 ) ) ↔ ( ∃ 𝑓 ∈ { ℎ ∈ X 𝑖 ∈ dom 𝑆 ( 𝑆 ‘ 𝑖 ) ∣ ℎ finSupp ( 0g ‘ 𝐺 ) } 𝑥 = ( 𝐺 Σg 𝑓 ) ∧ ∃ 𝑔 ∈ { ℎ ∈ X 𝑖 ∈ dom 𝑆 ( 𝑆 ‘ 𝑖 ) ∣ ℎ finSupp ( 0g ‘ 𝐺 ) } 𝑦 = ( 𝐺 Σg 𝑔 ) ) ) ) |
| 36 | reeanv | ⊢ ( ∃ 𝑓 ∈ { ℎ ∈ X 𝑖 ∈ dom 𝑆 ( 𝑆 ‘ 𝑖 ) ∣ ℎ finSupp ( 0g ‘ 𝐺 ) } ∃ 𝑔 ∈ { ℎ ∈ X 𝑖 ∈ dom 𝑆 ( 𝑆 ‘ 𝑖 ) ∣ ℎ finSupp ( 0g ‘ 𝐺 ) } ( 𝑥 = ( 𝐺 Σg 𝑓 ) ∧ 𝑦 = ( 𝐺 Σg 𝑔 ) ) ↔ ( ∃ 𝑓 ∈ { ℎ ∈ X 𝑖 ∈ dom 𝑆 ( 𝑆 ‘ 𝑖 ) ∣ ℎ finSupp ( 0g ‘ 𝐺 ) } 𝑥 = ( 𝐺 Σg 𝑓 ) ∧ ∃ 𝑔 ∈ { ℎ ∈ X 𝑖 ∈ dom 𝑆 ( 𝑆 ‘ 𝑖 ) ∣ ℎ finSupp ( 0g ‘ 𝐺 ) } 𝑦 = ( 𝐺 Σg 𝑔 ) ) ) | |
| 37 | simpl | ⊢ ( ( 𝐺 dom DProd 𝑆 ∧ ( 𝑓 ∈ { ℎ ∈ X 𝑖 ∈ dom 𝑆 ( 𝑆 ‘ 𝑖 ) ∣ ℎ finSupp ( 0g ‘ 𝐺 ) } ∧ 𝑔 ∈ { ℎ ∈ X 𝑖 ∈ dom 𝑆 ( 𝑆 ‘ 𝑖 ) ∣ ℎ finSupp ( 0g ‘ 𝐺 ) } ) ) → 𝐺 dom DProd 𝑆 ) | |
| 38 | eqidd | ⊢ ( ( 𝐺 dom DProd 𝑆 ∧ ( 𝑓 ∈ { ℎ ∈ X 𝑖 ∈ dom 𝑆 ( 𝑆 ‘ 𝑖 ) ∣ ℎ finSupp ( 0g ‘ 𝐺 ) } ∧ 𝑔 ∈ { ℎ ∈ X 𝑖 ∈ dom 𝑆 ( 𝑆 ‘ 𝑖 ) ∣ ℎ finSupp ( 0g ‘ 𝐺 ) } ) ) → dom 𝑆 = dom 𝑆 ) | |
| 39 | simprl | ⊢ ( ( 𝐺 dom DProd 𝑆 ∧ ( 𝑓 ∈ { ℎ ∈ X 𝑖 ∈ dom 𝑆 ( 𝑆 ‘ 𝑖 ) ∣ ℎ finSupp ( 0g ‘ 𝐺 ) } ∧ 𝑔 ∈ { ℎ ∈ X 𝑖 ∈ dom 𝑆 ( 𝑆 ‘ 𝑖 ) ∣ ℎ finSupp ( 0g ‘ 𝐺 ) } ) ) → 𝑓 ∈ { ℎ ∈ X 𝑖 ∈ dom 𝑆 ( 𝑆 ‘ 𝑖 ) ∣ ℎ finSupp ( 0g ‘ 𝐺 ) } ) | |
| 40 | simprr | ⊢ ( ( 𝐺 dom DProd 𝑆 ∧ ( 𝑓 ∈ { ℎ ∈ X 𝑖 ∈ dom 𝑆 ( 𝑆 ‘ 𝑖 ) ∣ ℎ finSupp ( 0g ‘ 𝐺 ) } ∧ 𝑔 ∈ { ℎ ∈ X 𝑖 ∈ dom 𝑆 ( 𝑆 ‘ 𝑖 ) ∣ ℎ finSupp ( 0g ‘ 𝐺 ) } ) ) → 𝑔 ∈ { ℎ ∈ X 𝑖 ∈ dom 𝑆 ( 𝑆 ‘ 𝑖 ) ∣ ℎ finSupp ( 0g ‘ 𝐺 ) } ) | |
| 41 | eqid | ⊢ ( -g ‘ 𝐺 ) = ( -g ‘ 𝐺 ) | |
| 42 | 4 5 37 38 39 40 41 | dprdfsub | ⊢ ( ( 𝐺 dom DProd 𝑆 ∧ ( 𝑓 ∈ { ℎ ∈ X 𝑖 ∈ dom 𝑆 ( 𝑆 ‘ 𝑖 ) ∣ ℎ finSupp ( 0g ‘ 𝐺 ) } ∧ 𝑔 ∈ { ℎ ∈ X 𝑖 ∈ dom 𝑆 ( 𝑆 ‘ 𝑖 ) ∣ ℎ finSupp ( 0g ‘ 𝐺 ) } ) ) → ( ( 𝑓 ∘f ( -g ‘ 𝐺 ) 𝑔 ) ∈ { ℎ ∈ X 𝑖 ∈ dom 𝑆 ( 𝑆 ‘ 𝑖 ) ∣ ℎ finSupp ( 0g ‘ 𝐺 ) } ∧ ( 𝐺 Σg ( 𝑓 ∘f ( -g ‘ 𝐺 ) 𝑔 ) ) = ( ( 𝐺 Σg 𝑓 ) ( -g ‘ 𝐺 ) ( 𝐺 Σg 𝑔 ) ) ) ) |
| 43 | 42 | simprd | ⊢ ( ( 𝐺 dom DProd 𝑆 ∧ ( 𝑓 ∈ { ℎ ∈ X 𝑖 ∈ dom 𝑆 ( 𝑆 ‘ 𝑖 ) ∣ ℎ finSupp ( 0g ‘ 𝐺 ) } ∧ 𝑔 ∈ { ℎ ∈ X 𝑖 ∈ dom 𝑆 ( 𝑆 ‘ 𝑖 ) ∣ ℎ finSupp ( 0g ‘ 𝐺 ) } ) ) → ( 𝐺 Σg ( 𝑓 ∘f ( -g ‘ 𝐺 ) 𝑔 ) ) = ( ( 𝐺 Σg 𝑓 ) ( -g ‘ 𝐺 ) ( 𝐺 Σg 𝑔 ) ) ) |
| 44 | 42 | simpld | ⊢ ( ( 𝐺 dom DProd 𝑆 ∧ ( 𝑓 ∈ { ℎ ∈ X 𝑖 ∈ dom 𝑆 ( 𝑆 ‘ 𝑖 ) ∣ ℎ finSupp ( 0g ‘ 𝐺 ) } ∧ 𝑔 ∈ { ℎ ∈ X 𝑖 ∈ dom 𝑆 ( 𝑆 ‘ 𝑖 ) ∣ ℎ finSupp ( 0g ‘ 𝐺 ) } ) ) → ( 𝑓 ∘f ( -g ‘ 𝐺 ) 𝑔 ) ∈ { ℎ ∈ X 𝑖 ∈ dom 𝑆 ( 𝑆 ‘ 𝑖 ) ∣ ℎ finSupp ( 0g ‘ 𝐺 ) } ) |
| 45 | 4 5 37 38 44 | eldprdi | ⊢ ( ( 𝐺 dom DProd 𝑆 ∧ ( 𝑓 ∈ { ℎ ∈ X 𝑖 ∈ dom 𝑆 ( 𝑆 ‘ 𝑖 ) ∣ ℎ finSupp ( 0g ‘ 𝐺 ) } ∧ 𝑔 ∈ { ℎ ∈ X 𝑖 ∈ dom 𝑆 ( 𝑆 ‘ 𝑖 ) ∣ ℎ finSupp ( 0g ‘ 𝐺 ) } ) ) → ( 𝐺 Σg ( 𝑓 ∘f ( -g ‘ 𝐺 ) 𝑔 ) ) ∈ ( 𝐺 DProd 𝑆 ) ) |
| 46 | 43 45 | eqeltrrd | ⊢ ( ( 𝐺 dom DProd 𝑆 ∧ ( 𝑓 ∈ { ℎ ∈ X 𝑖 ∈ dom 𝑆 ( 𝑆 ‘ 𝑖 ) ∣ ℎ finSupp ( 0g ‘ 𝐺 ) } ∧ 𝑔 ∈ { ℎ ∈ X 𝑖 ∈ dom 𝑆 ( 𝑆 ‘ 𝑖 ) ∣ ℎ finSupp ( 0g ‘ 𝐺 ) } ) ) → ( ( 𝐺 Σg 𝑓 ) ( -g ‘ 𝐺 ) ( 𝐺 Σg 𝑔 ) ) ∈ ( 𝐺 DProd 𝑆 ) ) |
| 47 | oveq12 | ⊢ ( ( 𝑥 = ( 𝐺 Σg 𝑓 ) ∧ 𝑦 = ( 𝐺 Σg 𝑔 ) ) → ( 𝑥 ( -g ‘ 𝐺 ) 𝑦 ) = ( ( 𝐺 Σg 𝑓 ) ( -g ‘ 𝐺 ) ( 𝐺 Σg 𝑔 ) ) ) | |
| 48 | 47 | eleq1d | ⊢ ( ( 𝑥 = ( 𝐺 Σg 𝑓 ) ∧ 𝑦 = ( 𝐺 Σg 𝑔 ) ) → ( ( 𝑥 ( -g ‘ 𝐺 ) 𝑦 ) ∈ ( 𝐺 DProd 𝑆 ) ↔ ( ( 𝐺 Σg 𝑓 ) ( -g ‘ 𝐺 ) ( 𝐺 Σg 𝑔 ) ) ∈ ( 𝐺 DProd 𝑆 ) ) ) |
| 49 | 46 48 | syl5ibrcom | ⊢ ( ( 𝐺 dom DProd 𝑆 ∧ ( 𝑓 ∈ { ℎ ∈ X 𝑖 ∈ dom 𝑆 ( 𝑆 ‘ 𝑖 ) ∣ ℎ finSupp ( 0g ‘ 𝐺 ) } ∧ 𝑔 ∈ { ℎ ∈ X 𝑖 ∈ dom 𝑆 ( 𝑆 ‘ 𝑖 ) ∣ ℎ finSupp ( 0g ‘ 𝐺 ) } ) ) → ( ( 𝑥 = ( 𝐺 Σg 𝑓 ) ∧ 𝑦 = ( 𝐺 Σg 𝑔 ) ) → ( 𝑥 ( -g ‘ 𝐺 ) 𝑦 ) ∈ ( 𝐺 DProd 𝑆 ) ) ) |
| 50 | 49 | rexlimdvva | ⊢ ( 𝐺 dom DProd 𝑆 → ( ∃ 𝑓 ∈ { ℎ ∈ X 𝑖 ∈ dom 𝑆 ( 𝑆 ‘ 𝑖 ) ∣ ℎ finSupp ( 0g ‘ 𝐺 ) } ∃ 𝑔 ∈ { ℎ ∈ X 𝑖 ∈ dom 𝑆 ( 𝑆 ‘ 𝑖 ) ∣ ℎ finSupp ( 0g ‘ 𝐺 ) } ( 𝑥 = ( 𝐺 Σg 𝑓 ) ∧ 𝑦 = ( 𝐺 Σg 𝑔 ) ) → ( 𝑥 ( -g ‘ 𝐺 ) 𝑦 ) ∈ ( 𝐺 DProd 𝑆 ) ) ) |
| 51 | 36 50 | biimtrrid | ⊢ ( 𝐺 dom DProd 𝑆 → ( ( ∃ 𝑓 ∈ { ℎ ∈ X 𝑖 ∈ dom 𝑆 ( 𝑆 ‘ 𝑖 ) ∣ ℎ finSupp ( 0g ‘ 𝐺 ) } 𝑥 = ( 𝐺 Σg 𝑓 ) ∧ ∃ 𝑔 ∈ { ℎ ∈ X 𝑖 ∈ dom 𝑆 ( 𝑆 ‘ 𝑖 ) ∣ ℎ finSupp ( 0g ‘ 𝐺 ) } 𝑦 = ( 𝐺 Σg 𝑔 ) ) → ( 𝑥 ( -g ‘ 𝐺 ) 𝑦 ) ∈ ( 𝐺 DProd 𝑆 ) ) ) |
| 52 | 35 51 | sylbid | ⊢ ( 𝐺 dom DProd 𝑆 → ( ( 𝑥 ∈ ( 𝐺 DProd 𝑆 ) ∧ 𝑦 ∈ ( 𝐺 DProd 𝑆 ) ) → ( 𝑥 ( -g ‘ 𝐺 ) 𝑦 ) ∈ ( 𝐺 DProd 𝑆 ) ) ) |
| 53 | 52 | ralrimivv | ⊢ ( 𝐺 dom DProd 𝑆 → ∀ 𝑥 ∈ ( 𝐺 DProd 𝑆 ) ∀ 𝑦 ∈ ( 𝐺 DProd 𝑆 ) ( 𝑥 ( -g ‘ 𝐺 ) 𝑦 ) ∈ ( 𝐺 DProd 𝑆 ) ) |
| 54 | dprdgrp | ⊢ ( 𝐺 dom DProd 𝑆 → 𝐺 ∈ Grp ) | |
| 55 | 1 41 | issubg4 | ⊢ ( 𝐺 ∈ Grp → ( ( 𝐺 DProd 𝑆 ) ∈ ( SubGrp ‘ 𝐺 ) ↔ ( ( 𝐺 DProd 𝑆 ) ⊆ ( Base ‘ 𝐺 ) ∧ ( 𝐺 DProd 𝑆 ) ≠ ∅ ∧ ∀ 𝑥 ∈ ( 𝐺 DProd 𝑆 ) ∀ 𝑦 ∈ ( 𝐺 DProd 𝑆 ) ( 𝑥 ( -g ‘ 𝐺 ) 𝑦 ) ∈ ( 𝐺 DProd 𝑆 ) ) ) ) |
| 56 | 54 55 | syl | ⊢ ( 𝐺 dom DProd 𝑆 → ( ( 𝐺 DProd 𝑆 ) ∈ ( SubGrp ‘ 𝐺 ) ↔ ( ( 𝐺 DProd 𝑆 ) ⊆ ( Base ‘ 𝐺 ) ∧ ( 𝐺 DProd 𝑆 ) ≠ ∅ ∧ ∀ 𝑥 ∈ ( 𝐺 DProd 𝑆 ) ∀ 𝑦 ∈ ( 𝐺 DProd 𝑆 ) ( 𝑥 ( -g ‘ 𝐺 ) 𝑦 ) ∈ ( 𝐺 DProd 𝑆 ) ) ) ) |
| 57 | 3 28 53 56 | mpbir3and | ⊢ ( 𝐺 dom DProd 𝑆 → ( 𝐺 DProd 𝑆 ) ∈ ( SubGrp ‘ 𝐺 ) ) |