This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for dmdprdsplit . (Contributed by Mario Carneiro, 26-Apr-2016)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | dprdsplit.2 | |- ( ph -> S : I --> ( SubGrp ` G ) ) |
|
| dprdsplit.i | |- ( ph -> ( C i^i D ) = (/) ) |
||
| dprdsplit.u | |- ( ph -> I = ( C u. D ) ) |
||
| dmdprdsplit.z | |- Z = ( Cntz ` G ) |
||
| dmdprdsplit.0 | |- .0. = ( 0g ` G ) |
||
| dmdprdsplit2.1 | |- ( ph -> G dom DProd ( S |` C ) ) |
||
| dmdprdsplit2.2 | |- ( ph -> G dom DProd ( S |` D ) ) |
||
| dmdprdsplit2.3 | |- ( ph -> ( G DProd ( S |` C ) ) C_ ( Z ` ( G DProd ( S |` D ) ) ) ) |
||
| dmdprdsplit2.4 | |- ( ph -> ( ( G DProd ( S |` C ) ) i^i ( G DProd ( S |` D ) ) ) = { .0. } ) |
||
| dmdprdsplit2lem.k | |- K = ( mrCls ` ( SubGrp ` G ) ) |
||
| Assertion | dmdprdsplit2lem | |- ( ( ph /\ X e. C ) -> ( ( Y e. I -> ( X =/= Y -> ( S ` X ) C_ ( Z ` ( S ` Y ) ) ) ) /\ ( ( S ` X ) i^i ( K ` U. ( S " ( I \ { X } ) ) ) ) C_ { .0. } ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dprdsplit.2 | |- ( ph -> S : I --> ( SubGrp ` G ) ) |
|
| 2 | dprdsplit.i | |- ( ph -> ( C i^i D ) = (/) ) |
|
| 3 | dprdsplit.u | |- ( ph -> I = ( C u. D ) ) |
|
| 4 | dmdprdsplit.z | |- Z = ( Cntz ` G ) |
|
| 5 | dmdprdsplit.0 | |- .0. = ( 0g ` G ) |
|
| 6 | dmdprdsplit2.1 | |- ( ph -> G dom DProd ( S |` C ) ) |
|
| 7 | dmdprdsplit2.2 | |- ( ph -> G dom DProd ( S |` D ) ) |
|
| 8 | dmdprdsplit2.3 | |- ( ph -> ( G DProd ( S |` C ) ) C_ ( Z ` ( G DProd ( S |` D ) ) ) ) |
|
| 9 | dmdprdsplit2.4 | |- ( ph -> ( ( G DProd ( S |` C ) ) i^i ( G DProd ( S |` D ) ) ) = { .0. } ) |
|
| 10 | dmdprdsplit2lem.k | |- K = ( mrCls ` ( SubGrp ` G ) ) |
|
| 11 | 3 | adantr | |- ( ( ph /\ X e. C ) -> I = ( C u. D ) ) |
| 12 | 11 | eleq2d | |- ( ( ph /\ X e. C ) -> ( Y e. I <-> Y e. ( C u. D ) ) ) |
| 13 | elun | |- ( Y e. ( C u. D ) <-> ( Y e. C \/ Y e. D ) ) |
|
| 14 | 12 13 | bitrdi | |- ( ( ph /\ X e. C ) -> ( Y e. I <-> ( Y e. C \/ Y e. D ) ) ) |
| 15 | 6 | ad2antrr | |- ( ( ( ph /\ X e. C ) /\ ( Y e. C /\ X =/= Y ) ) -> G dom DProd ( S |` C ) ) |
| 16 | ssun1 | |- C C_ ( C u. D ) |
|
| 17 | 16 3 | sseqtrrid | |- ( ph -> C C_ I ) |
| 18 | 1 17 | fssresd | |- ( ph -> ( S |` C ) : C --> ( SubGrp ` G ) ) |
| 19 | 18 | fdmd | |- ( ph -> dom ( S |` C ) = C ) |
| 20 | 19 | ad2antrr | |- ( ( ( ph /\ X e. C ) /\ ( Y e. C /\ X =/= Y ) ) -> dom ( S |` C ) = C ) |
| 21 | simplr | |- ( ( ( ph /\ X e. C ) /\ ( Y e. C /\ X =/= Y ) ) -> X e. C ) |
|
| 22 | simprl | |- ( ( ( ph /\ X e. C ) /\ ( Y e. C /\ X =/= Y ) ) -> Y e. C ) |
|
| 23 | simprr | |- ( ( ( ph /\ X e. C ) /\ ( Y e. C /\ X =/= Y ) ) -> X =/= Y ) |
|
| 24 | 15 20 21 22 23 4 | dprdcntz | |- ( ( ( ph /\ X e. C ) /\ ( Y e. C /\ X =/= Y ) ) -> ( ( S |` C ) ` X ) C_ ( Z ` ( ( S |` C ) ` Y ) ) ) |
| 25 | fvres | |- ( X e. C -> ( ( S |` C ) ` X ) = ( S ` X ) ) |
|
| 26 | 25 | ad2antlr | |- ( ( ( ph /\ X e. C ) /\ ( Y e. C /\ X =/= Y ) ) -> ( ( S |` C ) ` X ) = ( S ` X ) ) |
| 27 | fvres | |- ( Y e. C -> ( ( S |` C ) ` Y ) = ( S ` Y ) ) |
|
| 28 | 27 | ad2antrl | |- ( ( ( ph /\ X e. C ) /\ ( Y e. C /\ X =/= Y ) ) -> ( ( S |` C ) ` Y ) = ( S ` Y ) ) |
| 29 | 28 | fveq2d | |- ( ( ( ph /\ X e. C ) /\ ( Y e. C /\ X =/= Y ) ) -> ( Z ` ( ( S |` C ) ` Y ) ) = ( Z ` ( S ` Y ) ) ) |
| 30 | 24 26 29 | 3sstr3d | |- ( ( ( ph /\ X e. C ) /\ ( Y e. C /\ X =/= Y ) ) -> ( S ` X ) C_ ( Z ` ( S ` Y ) ) ) |
| 31 | 30 | exp32 | |- ( ( ph /\ X e. C ) -> ( Y e. C -> ( X =/= Y -> ( S ` X ) C_ ( Z ` ( S ` Y ) ) ) ) ) |
| 32 | 25 | ad2antlr | |- ( ( ( ph /\ X e. C ) /\ ( Y e. D /\ X =/= Y ) ) -> ( ( S |` C ) ` X ) = ( S ` X ) ) |
| 33 | 6 | ad2antrr | |- ( ( ( ph /\ X e. C ) /\ ( Y e. D /\ X =/= Y ) ) -> G dom DProd ( S |` C ) ) |
| 34 | 19 | ad2antrr | |- ( ( ( ph /\ X e. C ) /\ ( Y e. D /\ X =/= Y ) ) -> dom ( S |` C ) = C ) |
| 35 | simplr | |- ( ( ( ph /\ X e. C ) /\ ( Y e. D /\ X =/= Y ) ) -> X e. C ) |
|
| 36 | 33 34 35 | dprdub | |- ( ( ( ph /\ X e. C ) /\ ( Y e. D /\ X =/= Y ) ) -> ( ( S |` C ) ` X ) C_ ( G DProd ( S |` C ) ) ) |
| 37 | 32 36 | eqsstrrd | |- ( ( ( ph /\ X e. C ) /\ ( Y e. D /\ X =/= Y ) ) -> ( S ` X ) C_ ( G DProd ( S |` C ) ) ) |
| 38 | 8 | ad2antrr | |- ( ( ( ph /\ X e. C ) /\ ( Y e. D /\ X =/= Y ) ) -> ( G DProd ( S |` C ) ) C_ ( Z ` ( G DProd ( S |` D ) ) ) ) |
| 39 | eqid | |- ( Base ` G ) = ( Base ` G ) |
|
| 40 | 39 | dprdssv | |- ( G DProd ( S |` D ) ) C_ ( Base ` G ) |
| 41 | fvres | |- ( Y e. D -> ( ( S |` D ) ` Y ) = ( S ` Y ) ) |
|
| 42 | 41 | ad2antrl | |- ( ( ( ph /\ X e. C ) /\ ( Y e. D /\ X =/= Y ) ) -> ( ( S |` D ) ` Y ) = ( S ` Y ) ) |
| 43 | 7 | ad2antrr | |- ( ( ( ph /\ X e. C ) /\ ( Y e. D /\ X =/= Y ) ) -> G dom DProd ( S |` D ) ) |
| 44 | ssun2 | |- D C_ ( C u. D ) |
|
| 45 | 44 3 | sseqtrrid | |- ( ph -> D C_ I ) |
| 46 | 1 45 | fssresd | |- ( ph -> ( S |` D ) : D --> ( SubGrp ` G ) ) |
| 47 | 46 | fdmd | |- ( ph -> dom ( S |` D ) = D ) |
| 48 | 47 | ad2antrr | |- ( ( ( ph /\ X e. C ) /\ ( Y e. D /\ X =/= Y ) ) -> dom ( S |` D ) = D ) |
| 49 | simprl | |- ( ( ( ph /\ X e. C ) /\ ( Y e. D /\ X =/= Y ) ) -> Y e. D ) |
|
| 50 | 43 48 49 | dprdub | |- ( ( ( ph /\ X e. C ) /\ ( Y e. D /\ X =/= Y ) ) -> ( ( S |` D ) ` Y ) C_ ( G DProd ( S |` D ) ) ) |
| 51 | 42 50 | eqsstrrd | |- ( ( ( ph /\ X e. C ) /\ ( Y e. D /\ X =/= Y ) ) -> ( S ` Y ) C_ ( G DProd ( S |` D ) ) ) |
| 52 | 39 4 | cntz2ss | |- ( ( ( G DProd ( S |` D ) ) C_ ( Base ` G ) /\ ( S ` Y ) C_ ( G DProd ( S |` D ) ) ) -> ( Z ` ( G DProd ( S |` D ) ) ) C_ ( Z ` ( S ` Y ) ) ) |
| 53 | 40 51 52 | sylancr | |- ( ( ( ph /\ X e. C ) /\ ( Y e. D /\ X =/= Y ) ) -> ( Z ` ( G DProd ( S |` D ) ) ) C_ ( Z ` ( S ` Y ) ) ) |
| 54 | 38 53 | sstrd | |- ( ( ( ph /\ X e. C ) /\ ( Y e. D /\ X =/= Y ) ) -> ( G DProd ( S |` C ) ) C_ ( Z ` ( S ` Y ) ) ) |
| 55 | 37 54 | sstrd | |- ( ( ( ph /\ X e. C ) /\ ( Y e. D /\ X =/= Y ) ) -> ( S ` X ) C_ ( Z ` ( S ` Y ) ) ) |
| 56 | 55 | exp32 | |- ( ( ph /\ X e. C ) -> ( Y e. D -> ( X =/= Y -> ( S ` X ) C_ ( Z ` ( S ` Y ) ) ) ) ) |
| 57 | 31 56 | jaod | |- ( ( ph /\ X e. C ) -> ( ( Y e. C \/ Y e. D ) -> ( X =/= Y -> ( S ` X ) C_ ( Z ` ( S ` Y ) ) ) ) ) |
| 58 | 14 57 | sylbid | |- ( ( ph /\ X e. C ) -> ( Y e. I -> ( X =/= Y -> ( S ` X ) C_ ( Z ` ( S ` Y ) ) ) ) ) |
| 59 | dprdgrp | |- ( G dom DProd ( S |` C ) -> G e. Grp ) |
|
| 60 | 6 59 | syl | |- ( ph -> G e. Grp ) |
| 61 | 60 | adantr | |- ( ( ph /\ X e. C ) -> G e. Grp ) |
| 62 | 39 | subgacs | |- ( G e. Grp -> ( SubGrp ` G ) e. ( ACS ` ( Base ` G ) ) ) |
| 63 | acsmre | |- ( ( SubGrp ` G ) e. ( ACS ` ( Base ` G ) ) -> ( SubGrp ` G ) e. ( Moore ` ( Base ` G ) ) ) |
|
| 64 | 61 62 63 | 3syl | |- ( ( ph /\ X e. C ) -> ( SubGrp ` G ) e. ( Moore ` ( Base ` G ) ) ) |
| 65 | difundir | |- ( ( C u. D ) \ { X } ) = ( ( C \ { X } ) u. ( D \ { X } ) ) |
|
| 66 | 11 | difeq1d | |- ( ( ph /\ X e. C ) -> ( I \ { X } ) = ( ( C u. D ) \ { X } ) ) |
| 67 | simpr | |- ( ( ph /\ X e. C ) -> X e. C ) |
|
| 68 | 67 | snssd | |- ( ( ph /\ X e. C ) -> { X } C_ C ) |
| 69 | sslin | |- ( { X } C_ C -> ( D i^i { X } ) C_ ( D i^i C ) ) |
|
| 70 | 68 69 | syl | |- ( ( ph /\ X e. C ) -> ( D i^i { X } ) C_ ( D i^i C ) ) |
| 71 | incom | |- ( C i^i D ) = ( D i^i C ) |
|
| 72 | 2 | adantr | |- ( ( ph /\ X e. C ) -> ( C i^i D ) = (/) ) |
| 73 | 71 72 | eqtr3id | |- ( ( ph /\ X e. C ) -> ( D i^i C ) = (/) ) |
| 74 | sseq0 | |- ( ( ( D i^i { X } ) C_ ( D i^i C ) /\ ( D i^i C ) = (/) ) -> ( D i^i { X } ) = (/) ) |
|
| 75 | 70 73 74 | syl2anc | |- ( ( ph /\ X e. C ) -> ( D i^i { X } ) = (/) ) |
| 76 | disj3 | |- ( ( D i^i { X } ) = (/) <-> D = ( D \ { X } ) ) |
|
| 77 | 75 76 | sylib | |- ( ( ph /\ X e. C ) -> D = ( D \ { X } ) ) |
| 78 | 77 | uneq2d | |- ( ( ph /\ X e. C ) -> ( ( C \ { X } ) u. D ) = ( ( C \ { X } ) u. ( D \ { X } ) ) ) |
| 79 | 65 66 78 | 3eqtr4a | |- ( ( ph /\ X e. C ) -> ( I \ { X } ) = ( ( C \ { X } ) u. D ) ) |
| 80 | 79 | imaeq2d | |- ( ( ph /\ X e. C ) -> ( S " ( I \ { X } ) ) = ( S " ( ( C \ { X } ) u. D ) ) ) |
| 81 | imaundi | |- ( S " ( ( C \ { X } ) u. D ) ) = ( ( S " ( C \ { X } ) ) u. ( S " D ) ) |
|
| 82 | 80 81 | eqtrdi | |- ( ( ph /\ X e. C ) -> ( S " ( I \ { X } ) ) = ( ( S " ( C \ { X } ) ) u. ( S " D ) ) ) |
| 83 | 82 | unieqd | |- ( ( ph /\ X e. C ) -> U. ( S " ( I \ { X } ) ) = U. ( ( S " ( C \ { X } ) ) u. ( S " D ) ) ) |
| 84 | uniun | |- U. ( ( S " ( C \ { X } ) ) u. ( S " D ) ) = ( U. ( S " ( C \ { X } ) ) u. U. ( S " D ) ) |
|
| 85 | 83 84 | eqtrdi | |- ( ( ph /\ X e. C ) -> U. ( S " ( I \ { X } ) ) = ( U. ( S " ( C \ { X } ) ) u. U. ( S " D ) ) ) |
| 86 | difss | |- ( C \ { X } ) C_ C |
|
| 87 | imass2 | |- ( ( C \ { X } ) C_ C -> ( S " ( C \ { X } ) ) C_ ( S " C ) ) |
|
| 88 | uniss | |- ( ( S " ( C \ { X } ) ) C_ ( S " C ) -> U. ( S " ( C \ { X } ) ) C_ U. ( S " C ) ) |
|
| 89 | 86 87 88 | mp2b | |- U. ( S " ( C \ { X } ) ) C_ U. ( S " C ) |
| 90 | imassrn | |- ( S " C ) C_ ran S |
|
| 91 | 1 | frnd | |- ( ph -> ran S C_ ( SubGrp ` G ) ) |
| 92 | 91 | adantr | |- ( ( ph /\ X e. C ) -> ran S C_ ( SubGrp ` G ) ) |
| 93 | mresspw | |- ( ( SubGrp ` G ) e. ( Moore ` ( Base ` G ) ) -> ( SubGrp ` G ) C_ ~P ( Base ` G ) ) |
|
| 94 | 64 93 | syl | |- ( ( ph /\ X e. C ) -> ( SubGrp ` G ) C_ ~P ( Base ` G ) ) |
| 95 | 92 94 | sstrd | |- ( ( ph /\ X e. C ) -> ran S C_ ~P ( Base ` G ) ) |
| 96 | 90 95 | sstrid | |- ( ( ph /\ X e. C ) -> ( S " C ) C_ ~P ( Base ` G ) ) |
| 97 | sspwuni | |- ( ( S " C ) C_ ~P ( Base ` G ) <-> U. ( S " C ) C_ ( Base ` G ) ) |
|
| 98 | 96 97 | sylib | |- ( ( ph /\ X e. C ) -> U. ( S " C ) C_ ( Base ` G ) ) |
| 99 | 89 98 | sstrid | |- ( ( ph /\ X e. C ) -> U. ( S " ( C \ { X } ) ) C_ ( Base ` G ) ) |
| 100 | 64 10 99 | mrcssidd | |- ( ( ph /\ X e. C ) -> U. ( S " ( C \ { X } ) ) C_ ( K ` U. ( S " ( C \ { X } ) ) ) ) |
| 101 | imassrn | |- ( S " D ) C_ ran S |
|
| 102 | 101 95 | sstrid | |- ( ( ph /\ X e. C ) -> ( S " D ) C_ ~P ( Base ` G ) ) |
| 103 | sspwuni | |- ( ( S " D ) C_ ~P ( Base ` G ) <-> U. ( S " D ) C_ ( Base ` G ) ) |
|
| 104 | 102 103 | sylib | |- ( ( ph /\ X e. C ) -> U. ( S " D ) C_ ( Base ` G ) ) |
| 105 | 64 10 104 | mrcssidd | |- ( ( ph /\ X e. C ) -> U. ( S " D ) C_ ( K ` U. ( S " D ) ) ) |
| 106 | 10 | dprdspan | |- ( G dom DProd ( S |` D ) -> ( G DProd ( S |` D ) ) = ( K ` U. ran ( S |` D ) ) ) |
| 107 | 7 106 | syl | |- ( ph -> ( G DProd ( S |` D ) ) = ( K ` U. ran ( S |` D ) ) ) |
| 108 | df-ima | |- ( S " D ) = ran ( S |` D ) |
|
| 109 | 108 | unieqi | |- U. ( S " D ) = U. ran ( S |` D ) |
| 110 | 109 | fveq2i | |- ( K ` U. ( S " D ) ) = ( K ` U. ran ( S |` D ) ) |
| 111 | 107 110 | eqtr4di | |- ( ph -> ( G DProd ( S |` D ) ) = ( K ` U. ( S " D ) ) ) |
| 112 | 111 | adantr | |- ( ( ph /\ X e. C ) -> ( G DProd ( S |` D ) ) = ( K ` U. ( S " D ) ) ) |
| 113 | 105 112 | sseqtrrd | |- ( ( ph /\ X e. C ) -> U. ( S " D ) C_ ( G DProd ( S |` D ) ) ) |
| 114 | unss12 | |- ( ( U. ( S " ( C \ { X } ) ) C_ ( K ` U. ( S " ( C \ { X } ) ) ) /\ U. ( S " D ) C_ ( G DProd ( S |` D ) ) ) -> ( U. ( S " ( C \ { X } ) ) u. U. ( S " D ) ) C_ ( ( K ` U. ( S " ( C \ { X } ) ) ) u. ( G DProd ( S |` D ) ) ) ) |
|
| 115 | 100 113 114 | syl2anc | |- ( ( ph /\ X e. C ) -> ( U. ( S " ( C \ { X } ) ) u. U. ( S " D ) ) C_ ( ( K ` U. ( S " ( C \ { X } ) ) ) u. ( G DProd ( S |` D ) ) ) ) |
| 116 | 10 | mrccl | |- ( ( ( SubGrp ` G ) e. ( Moore ` ( Base ` G ) ) /\ U. ( S " ( C \ { X } ) ) C_ ( Base ` G ) ) -> ( K ` U. ( S " ( C \ { X } ) ) ) e. ( SubGrp ` G ) ) |
| 117 | 64 99 116 | syl2anc | |- ( ( ph /\ X e. C ) -> ( K ` U. ( S " ( C \ { X } ) ) ) e. ( SubGrp ` G ) ) |
| 118 | dprdsubg | |- ( G dom DProd ( S |` D ) -> ( G DProd ( S |` D ) ) e. ( SubGrp ` G ) ) |
|
| 119 | 7 118 | syl | |- ( ph -> ( G DProd ( S |` D ) ) e. ( SubGrp ` G ) ) |
| 120 | 119 | adantr | |- ( ( ph /\ X e. C ) -> ( G DProd ( S |` D ) ) e. ( SubGrp ` G ) ) |
| 121 | eqid | |- ( LSSum ` G ) = ( LSSum ` G ) |
|
| 122 | 121 | lsmunss | |- ( ( ( K ` U. ( S " ( C \ { X } ) ) ) e. ( SubGrp ` G ) /\ ( G DProd ( S |` D ) ) e. ( SubGrp ` G ) ) -> ( ( K ` U. ( S " ( C \ { X } ) ) ) u. ( G DProd ( S |` D ) ) ) C_ ( ( K ` U. ( S " ( C \ { X } ) ) ) ( LSSum ` G ) ( G DProd ( S |` D ) ) ) ) |
| 123 | 117 120 122 | syl2anc | |- ( ( ph /\ X e. C ) -> ( ( K ` U. ( S " ( C \ { X } ) ) ) u. ( G DProd ( S |` D ) ) ) C_ ( ( K ` U. ( S " ( C \ { X } ) ) ) ( LSSum ` G ) ( G DProd ( S |` D ) ) ) ) |
| 124 | 115 123 | sstrd | |- ( ( ph /\ X e. C ) -> ( U. ( S " ( C \ { X } ) ) u. U. ( S " D ) ) C_ ( ( K ` U. ( S " ( C \ { X } ) ) ) ( LSSum ` G ) ( G DProd ( S |` D ) ) ) ) |
| 125 | 85 124 | eqsstrd | |- ( ( ph /\ X e. C ) -> U. ( S " ( I \ { X } ) ) C_ ( ( K ` U. ( S " ( C \ { X } ) ) ) ( LSSum ` G ) ( G DProd ( S |` D ) ) ) ) |
| 126 | 89 | a1i | |- ( ( ph /\ X e. C ) -> U. ( S " ( C \ { X } ) ) C_ U. ( S " C ) ) |
| 127 | 64 10 126 98 | mrcssd | |- ( ( ph /\ X e. C ) -> ( K ` U. ( S " ( C \ { X } ) ) ) C_ ( K ` U. ( S " C ) ) ) |
| 128 | 10 | dprdspan | |- ( G dom DProd ( S |` C ) -> ( G DProd ( S |` C ) ) = ( K ` U. ran ( S |` C ) ) ) |
| 129 | 6 128 | syl | |- ( ph -> ( G DProd ( S |` C ) ) = ( K ` U. ran ( S |` C ) ) ) |
| 130 | df-ima | |- ( S " C ) = ran ( S |` C ) |
|
| 131 | 130 | unieqi | |- U. ( S " C ) = U. ran ( S |` C ) |
| 132 | 131 | fveq2i | |- ( K ` U. ( S " C ) ) = ( K ` U. ran ( S |` C ) ) |
| 133 | 129 132 | eqtr4di | |- ( ph -> ( G DProd ( S |` C ) ) = ( K ` U. ( S " C ) ) ) |
| 134 | 133 | adantr | |- ( ( ph /\ X e. C ) -> ( G DProd ( S |` C ) ) = ( K ` U. ( S " C ) ) ) |
| 135 | 127 134 | sseqtrrd | |- ( ( ph /\ X e. C ) -> ( K ` U. ( S " ( C \ { X } ) ) ) C_ ( G DProd ( S |` C ) ) ) |
| 136 | 8 | adantr | |- ( ( ph /\ X e. C ) -> ( G DProd ( S |` C ) ) C_ ( Z ` ( G DProd ( S |` D ) ) ) ) |
| 137 | 135 136 | sstrd | |- ( ( ph /\ X e. C ) -> ( K ` U. ( S " ( C \ { X } ) ) ) C_ ( Z ` ( G DProd ( S |` D ) ) ) ) |
| 138 | 121 4 | lsmsubg | |- ( ( ( K ` U. ( S " ( C \ { X } ) ) ) e. ( SubGrp ` G ) /\ ( G DProd ( S |` D ) ) e. ( SubGrp ` G ) /\ ( K ` U. ( S " ( C \ { X } ) ) ) C_ ( Z ` ( G DProd ( S |` D ) ) ) ) -> ( ( K ` U. ( S " ( C \ { X } ) ) ) ( LSSum ` G ) ( G DProd ( S |` D ) ) ) e. ( SubGrp ` G ) ) |
| 139 | 117 120 137 138 | syl3anc | |- ( ( ph /\ X e. C ) -> ( ( K ` U. ( S " ( C \ { X } ) ) ) ( LSSum ` G ) ( G DProd ( S |` D ) ) ) e. ( SubGrp ` G ) ) |
| 140 | 10 | mrcsscl | |- ( ( ( SubGrp ` G ) e. ( Moore ` ( Base ` G ) ) /\ U. ( S " ( I \ { X } ) ) C_ ( ( K ` U. ( S " ( C \ { X } ) ) ) ( LSSum ` G ) ( G DProd ( S |` D ) ) ) /\ ( ( K ` U. ( S " ( C \ { X } ) ) ) ( LSSum ` G ) ( G DProd ( S |` D ) ) ) e. ( SubGrp ` G ) ) -> ( K ` U. ( S " ( I \ { X } ) ) ) C_ ( ( K ` U. ( S " ( C \ { X } ) ) ) ( LSSum ` G ) ( G DProd ( S |` D ) ) ) ) |
| 141 | 64 125 139 140 | syl3anc | |- ( ( ph /\ X e. C ) -> ( K ` U. ( S " ( I \ { X } ) ) ) C_ ( ( K ` U. ( S " ( C \ { X } ) ) ) ( LSSum ` G ) ( G DProd ( S |` D ) ) ) ) |
| 142 | sslin | |- ( ( K ` U. ( S " ( I \ { X } ) ) ) C_ ( ( K ` U. ( S " ( C \ { X } ) ) ) ( LSSum ` G ) ( G DProd ( S |` D ) ) ) -> ( ( S ` X ) i^i ( K ` U. ( S " ( I \ { X } ) ) ) ) C_ ( ( S ` X ) i^i ( ( K ` U. ( S " ( C \ { X } ) ) ) ( LSSum ` G ) ( G DProd ( S |` D ) ) ) ) ) |
|
| 143 | 141 142 | syl | |- ( ( ph /\ X e. C ) -> ( ( S ` X ) i^i ( K ` U. ( S " ( I \ { X } ) ) ) ) C_ ( ( S ` X ) i^i ( ( K ` U. ( S " ( C \ { X } ) ) ) ( LSSum ` G ) ( G DProd ( S |` D ) ) ) ) ) |
| 144 | 17 | sselda | |- ( ( ph /\ X e. C ) -> X e. I ) |
| 145 | 1 | ffvelcdmda | |- ( ( ph /\ X e. I ) -> ( S ` X ) e. ( SubGrp ` G ) ) |
| 146 | 144 145 | syldan | |- ( ( ph /\ X e. C ) -> ( S ` X ) e. ( SubGrp ` G ) ) |
| 147 | 25 | adantl | |- ( ( ph /\ X e. C ) -> ( ( S |` C ) ` X ) = ( S ` X ) ) |
| 148 | 6 | adantr | |- ( ( ph /\ X e. C ) -> G dom DProd ( S |` C ) ) |
| 149 | 19 | adantr | |- ( ( ph /\ X e. C ) -> dom ( S |` C ) = C ) |
| 150 | 148 149 67 | dprdub | |- ( ( ph /\ X e. C ) -> ( ( S |` C ) ` X ) C_ ( G DProd ( S |` C ) ) ) |
| 151 | 147 150 | eqsstrrd | |- ( ( ph /\ X e. C ) -> ( S ` X ) C_ ( G DProd ( S |` C ) ) ) |
| 152 | dprdsubg | |- ( G dom DProd ( S |` C ) -> ( G DProd ( S |` C ) ) e. ( SubGrp ` G ) ) |
|
| 153 | 6 152 | syl | |- ( ph -> ( G DProd ( S |` C ) ) e. ( SubGrp ` G ) ) |
| 154 | 153 | adantr | |- ( ( ph /\ X e. C ) -> ( G DProd ( S |` C ) ) e. ( SubGrp ` G ) ) |
| 155 | 121 | lsmlub | |- ( ( ( S ` X ) e. ( SubGrp ` G ) /\ ( K ` U. ( S " ( C \ { X } ) ) ) e. ( SubGrp ` G ) /\ ( G DProd ( S |` C ) ) e. ( SubGrp ` G ) ) -> ( ( ( S ` X ) C_ ( G DProd ( S |` C ) ) /\ ( K ` U. ( S " ( C \ { X } ) ) ) C_ ( G DProd ( S |` C ) ) ) <-> ( ( S ` X ) ( LSSum ` G ) ( K ` U. ( S " ( C \ { X } ) ) ) ) C_ ( G DProd ( S |` C ) ) ) ) |
| 156 | 146 117 154 155 | syl3anc | |- ( ( ph /\ X e. C ) -> ( ( ( S ` X ) C_ ( G DProd ( S |` C ) ) /\ ( K ` U. ( S " ( C \ { X } ) ) ) C_ ( G DProd ( S |` C ) ) ) <-> ( ( S ` X ) ( LSSum ` G ) ( K ` U. ( S " ( C \ { X } ) ) ) ) C_ ( G DProd ( S |` C ) ) ) ) |
| 157 | 151 135 156 | mpbi2and | |- ( ( ph /\ X e. C ) -> ( ( S ` X ) ( LSSum ` G ) ( K ` U. ( S " ( C \ { X } ) ) ) ) C_ ( G DProd ( S |` C ) ) ) |
| 158 | 157 | ssrind | |- ( ( ph /\ X e. C ) -> ( ( ( S ` X ) ( LSSum ` G ) ( K ` U. ( S " ( C \ { X } ) ) ) ) i^i ( G DProd ( S |` D ) ) ) C_ ( ( G DProd ( S |` C ) ) i^i ( G DProd ( S |` D ) ) ) ) |
| 159 | 9 | adantr | |- ( ( ph /\ X e. C ) -> ( ( G DProd ( S |` C ) ) i^i ( G DProd ( S |` D ) ) ) = { .0. } ) |
| 160 | 158 159 | sseqtrd | |- ( ( ph /\ X e. C ) -> ( ( ( S ` X ) ( LSSum ` G ) ( K ` U. ( S " ( C \ { X } ) ) ) ) i^i ( G DProd ( S |` D ) ) ) C_ { .0. } ) |
| 161 | 121 | lsmub1 | |- ( ( ( S ` X ) e. ( SubGrp ` G ) /\ ( K ` U. ( S " ( C \ { X } ) ) ) e. ( SubGrp ` G ) ) -> ( S ` X ) C_ ( ( S ` X ) ( LSSum ` G ) ( K ` U. ( S " ( C \ { X } ) ) ) ) ) |
| 162 | 146 117 161 | syl2anc | |- ( ( ph /\ X e. C ) -> ( S ` X ) C_ ( ( S ` X ) ( LSSum ` G ) ( K ` U. ( S " ( C \ { X } ) ) ) ) ) |
| 163 | 5 | subg0cl | |- ( ( S ` X ) e. ( SubGrp ` G ) -> .0. e. ( S ` X ) ) |
| 164 | 146 163 | syl | |- ( ( ph /\ X e. C ) -> .0. e. ( S ` X ) ) |
| 165 | 162 164 | sseldd | |- ( ( ph /\ X e. C ) -> .0. e. ( ( S ` X ) ( LSSum ` G ) ( K ` U. ( S " ( C \ { X } ) ) ) ) ) |
| 166 | 5 | subg0cl | |- ( ( G DProd ( S |` D ) ) e. ( SubGrp ` G ) -> .0. e. ( G DProd ( S |` D ) ) ) |
| 167 | 120 166 | syl | |- ( ( ph /\ X e. C ) -> .0. e. ( G DProd ( S |` D ) ) ) |
| 168 | 165 167 | elind | |- ( ( ph /\ X e. C ) -> .0. e. ( ( ( S ` X ) ( LSSum ` G ) ( K ` U. ( S " ( C \ { X } ) ) ) ) i^i ( G DProd ( S |` D ) ) ) ) |
| 169 | 168 | snssd | |- ( ( ph /\ X e. C ) -> { .0. } C_ ( ( ( S ` X ) ( LSSum ` G ) ( K ` U. ( S " ( C \ { X } ) ) ) ) i^i ( G DProd ( S |` D ) ) ) ) |
| 170 | 160 169 | eqssd | |- ( ( ph /\ X e. C ) -> ( ( ( S ` X ) ( LSSum ` G ) ( K ` U. ( S " ( C \ { X } ) ) ) ) i^i ( G DProd ( S |` D ) ) ) = { .0. } ) |
| 171 | resima2 | |- ( ( C \ { X } ) C_ C -> ( ( S |` C ) " ( C \ { X } ) ) = ( S " ( C \ { X } ) ) ) |
|
| 172 | 86 171 | mp1i | |- ( ( ph /\ X e. C ) -> ( ( S |` C ) " ( C \ { X } ) ) = ( S " ( C \ { X } ) ) ) |
| 173 | 172 | unieqd | |- ( ( ph /\ X e. C ) -> U. ( ( S |` C ) " ( C \ { X } ) ) = U. ( S " ( C \ { X } ) ) ) |
| 174 | 173 | fveq2d | |- ( ( ph /\ X e. C ) -> ( K ` U. ( ( S |` C ) " ( C \ { X } ) ) ) = ( K ` U. ( S " ( C \ { X } ) ) ) ) |
| 175 | 147 174 | ineq12d | |- ( ( ph /\ X e. C ) -> ( ( ( S |` C ) ` X ) i^i ( K ` U. ( ( S |` C ) " ( C \ { X } ) ) ) ) = ( ( S ` X ) i^i ( K ` U. ( S " ( C \ { X } ) ) ) ) ) |
| 176 | 148 149 67 5 10 | dprddisj | |- ( ( ph /\ X e. C ) -> ( ( ( S |` C ) ` X ) i^i ( K ` U. ( ( S |` C ) " ( C \ { X } ) ) ) ) = { .0. } ) |
| 177 | 175 176 | eqtr3d | |- ( ( ph /\ X e. C ) -> ( ( S ` X ) i^i ( K ` U. ( S " ( C \ { X } ) ) ) ) = { .0. } ) |
| 178 | 1 | adantr | |- ( ( ph /\ X e. C ) -> S : I --> ( SubGrp ` G ) ) |
| 179 | ffun | |- ( S : I --> ( SubGrp ` G ) -> Fun S ) |
|
| 180 | funiunfv | |- ( Fun S -> U_ y e. ( C \ { X } ) ( S ` y ) = U. ( S " ( C \ { X } ) ) ) |
|
| 181 | 178 179 180 | 3syl | |- ( ( ph /\ X e. C ) -> U_ y e. ( C \ { X } ) ( S ` y ) = U. ( S " ( C \ { X } ) ) ) |
| 182 | 6 | ad2antrr | |- ( ( ( ph /\ X e. C ) /\ y e. ( C \ { X } ) ) -> G dom DProd ( S |` C ) ) |
| 183 | 19 | ad2antrr | |- ( ( ( ph /\ X e. C ) /\ y e. ( C \ { X } ) ) -> dom ( S |` C ) = C ) |
| 184 | eldifi | |- ( y e. ( C \ { X } ) -> y e. C ) |
|
| 185 | 184 | adantl | |- ( ( ( ph /\ X e. C ) /\ y e. ( C \ { X } ) ) -> y e. C ) |
| 186 | simplr | |- ( ( ( ph /\ X e. C ) /\ y e. ( C \ { X } ) ) -> X e. C ) |
|
| 187 | eldifsni | |- ( y e. ( C \ { X } ) -> y =/= X ) |
|
| 188 | 187 | adantl | |- ( ( ( ph /\ X e. C ) /\ y e. ( C \ { X } ) ) -> y =/= X ) |
| 189 | 182 183 185 186 188 4 | dprdcntz | |- ( ( ( ph /\ X e. C ) /\ y e. ( C \ { X } ) ) -> ( ( S |` C ) ` y ) C_ ( Z ` ( ( S |` C ) ` X ) ) ) |
| 190 | 185 | fvresd | |- ( ( ( ph /\ X e. C ) /\ y e. ( C \ { X } ) ) -> ( ( S |` C ) ` y ) = ( S ` y ) ) |
| 191 | 25 | ad2antlr | |- ( ( ( ph /\ X e. C ) /\ y e. ( C \ { X } ) ) -> ( ( S |` C ) ` X ) = ( S ` X ) ) |
| 192 | 191 | fveq2d | |- ( ( ( ph /\ X e. C ) /\ y e. ( C \ { X } ) ) -> ( Z ` ( ( S |` C ) ` X ) ) = ( Z ` ( S ` X ) ) ) |
| 193 | 189 190 192 | 3sstr3d | |- ( ( ( ph /\ X e. C ) /\ y e. ( C \ { X } ) ) -> ( S ` y ) C_ ( Z ` ( S ` X ) ) ) |
| 194 | 193 | ralrimiva | |- ( ( ph /\ X e. C ) -> A. y e. ( C \ { X } ) ( S ` y ) C_ ( Z ` ( S ` X ) ) ) |
| 195 | iunss | |- ( U_ y e. ( C \ { X } ) ( S ` y ) C_ ( Z ` ( S ` X ) ) <-> A. y e. ( C \ { X } ) ( S ` y ) C_ ( Z ` ( S ` X ) ) ) |
|
| 196 | 194 195 | sylibr | |- ( ( ph /\ X e. C ) -> U_ y e. ( C \ { X } ) ( S ` y ) C_ ( Z ` ( S ` X ) ) ) |
| 197 | 181 196 | eqsstrrd | |- ( ( ph /\ X e. C ) -> U. ( S " ( C \ { X } ) ) C_ ( Z ` ( S ` X ) ) ) |
| 198 | 39 | subgss | |- ( ( S ` X ) e. ( SubGrp ` G ) -> ( S ` X ) C_ ( Base ` G ) ) |
| 199 | 146 198 | syl | |- ( ( ph /\ X e. C ) -> ( S ` X ) C_ ( Base ` G ) ) |
| 200 | 39 4 | cntzsubg | |- ( ( G e. Grp /\ ( S ` X ) C_ ( Base ` G ) ) -> ( Z ` ( S ` X ) ) e. ( SubGrp ` G ) ) |
| 201 | 61 199 200 | syl2anc | |- ( ( ph /\ X e. C ) -> ( Z ` ( S ` X ) ) e. ( SubGrp ` G ) ) |
| 202 | 10 | mrcsscl | |- ( ( ( SubGrp ` G ) e. ( Moore ` ( Base ` G ) ) /\ U. ( S " ( C \ { X } ) ) C_ ( Z ` ( S ` X ) ) /\ ( Z ` ( S ` X ) ) e. ( SubGrp ` G ) ) -> ( K ` U. ( S " ( C \ { X } ) ) ) C_ ( Z ` ( S ` X ) ) ) |
| 203 | 64 197 201 202 | syl3anc | |- ( ( ph /\ X e. C ) -> ( K ` U. ( S " ( C \ { X } ) ) ) C_ ( Z ` ( S ` X ) ) ) |
| 204 | 4 117 146 203 | cntzrecd | |- ( ( ph /\ X e. C ) -> ( S ` X ) C_ ( Z ` ( K ` U. ( S " ( C \ { X } ) ) ) ) ) |
| 205 | 121 146 117 120 5 170 177 4 204 | lsmdisj3 | |- ( ( ph /\ X e. C ) -> ( ( S ` X ) i^i ( ( K ` U. ( S " ( C \ { X } ) ) ) ( LSSum ` G ) ( G DProd ( S |` D ) ) ) ) = { .0. } ) |
| 206 | 143 205 | sseqtrd | |- ( ( ph /\ X e. C ) -> ( ( S ` X ) i^i ( K ` U. ( S " ( I \ { X } ) ) ) ) C_ { .0. } ) |
| 207 | 58 206 | jca | |- ( ( ph /\ X e. C ) -> ( ( Y e. I -> ( X =/= Y -> ( S ` X ) C_ ( Z ` ( S ` Y ) ) ) ) /\ ( ( S ` X ) i^i ( K ` U. ( S " ( I \ { X } ) ) ) ) C_ { .0. } ) ) |