This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The direct product is the span of the union of the factors. (Contributed by Mario Carneiro, 25-Apr-2016)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | dprdspan.k | ⊢ 𝐾 = ( mrCls ‘ ( SubGrp ‘ 𝐺 ) ) | |
| Assertion | dprdspan | ⊢ ( 𝐺 dom DProd 𝑆 → ( 𝐺 DProd 𝑆 ) = ( 𝐾 ‘ ∪ ran 𝑆 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dprdspan.k | ⊢ 𝐾 = ( mrCls ‘ ( SubGrp ‘ 𝐺 ) ) | |
| 2 | id | ⊢ ( 𝐺 dom DProd 𝑆 → 𝐺 dom DProd 𝑆 ) | |
| 3 | eqidd | ⊢ ( 𝐺 dom DProd 𝑆 → dom 𝑆 = dom 𝑆 ) | |
| 4 | dprdgrp | ⊢ ( 𝐺 dom DProd 𝑆 → 𝐺 ∈ Grp ) | |
| 5 | eqid | ⊢ ( Base ‘ 𝐺 ) = ( Base ‘ 𝐺 ) | |
| 6 | 5 | subgacs | ⊢ ( 𝐺 ∈ Grp → ( SubGrp ‘ 𝐺 ) ∈ ( ACS ‘ ( Base ‘ 𝐺 ) ) ) |
| 7 | acsmre | ⊢ ( ( SubGrp ‘ 𝐺 ) ∈ ( ACS ‘ ( Base ‘ 𝐺 ) ) → ( SubGrp ‘ 𝐺 ) ∈ ( Moore ‘ ( Base ‘ 𝐺 ) ) ) | |
| 8 | 4 6 7 | 3syl | ⊢ ( 𝐺 dom DProd 𝑆 → ( SubGrp ‘ 𝐺 ) ∈ ( Moore ‘ ( Base ‘ 𝐺 ) ) ) |
| 9 | dprdf | ⊢ ( 𝐺 dom DProd 𝑆 → 𝑆 : dom 𝑆 ⟶ ( SubGrp ‘ 𝐺 ) ) | |
| 10 | 9 | ffnd | ⊢ ( 𝐺 dom DProd 𝑆 → 𝑆 Fn dom 𝑆 ) |
| 11 | fniunfv | ⊢ ( 𝑆 Fn dom 𝑆 → ∪ 𝑘 ∈ dom 𝑆 ( 𝑆 ‘ 𝑘 ) = ∪ ran 𝑆 ) | |
| 12 | 10 11 | syl | ⊢ ( 𝐺 dom DProd 𝑆 → ∪ 𝑘 ∈ dom 𝑆 ( 𝑆 ‘ 𝑘 ) = ∪ ran 𝑆 ) |
| 13 | simpl | ⊢ ( ( 𝐺 dom DProd 𝑆 ∧ 𝑘 ∈ dom 𝑆 ) → 𝐺 dom DProd 𝑆 ) | |
| 14 | eqidd | ⊢ ( ( 𝐺 dom DProd 𝑆 ∧ 𝑘 ∈ dom 𝑆 ) → dom 𝑆 = dom 𝑆 ) | |
| 15 | simpr | ⊢ ( ( 𝐺 dom DProd 𝑆 ∧ 𝑘 ∈ dom 𝑆 ) → 𝑘 ∈ dom 𝑆 ) | |
| 16 | 13 14 15 | dprdub | ⊢ ( ( 𝐺 dom DProd 𝑆 ∧ 𝑘 ∈ dom 𝑆 ) → ( 𝑆 ‘ 𝑘 ) ⊆ ( 𝐺 DProd 𝑆 ) ) |
| 17 | 16 | ralrimiva | ⊢ ( 𝐺 dom DProd 𝑆 → ∀ 𝑘 ∈ dom 𝑆 ( 𝑆 ‘ 𝑘 ) ⊆ ( 𝐺 DProd 𝑆 ) ) |
| 18 | iunss | ⊢ ( ∪ 𝑘 ∈ dom 𝑆 ( 𝑆 ‘ 𝑘 ) ⊆ ( 𝐺 DProd 𝑆 ) ↔ ∀ 𝑘 ∈ dom 𝑆 ( 𝑆 ‘ 𝑘 ) ⊆ ( 𝐺 DProd 𝑆 ) ) | |
| 19 | 17 18 | sylibr | ⊢ ( 𝐺 dom DProd 𝑆 → ∪ 𝑘 ∈ dom 𝑆 ( 𝑆 ‘ 𝑘 ) ⊆ ( 𝐺 DProd 𝑆 ) ) |
| 20 | 12 19 | eqsstrrd | ⊢ ( 𝐺 dom DProd 𝑆 → ∪ ran 𝑆 ⊆ ( 𝐺 DProd 𝑆 ) ) |
| 21 | 5 | dprdssv | ⊢ ( 𝐺 DProd 𝑆 ) ⊆ ( Base ‘ 𝐺 ) |
| 22 | 20 21 | sstrdi | ⊢ ( 𝐺 dom DProd 𝑆 → ∪ ran 𝑆 ⊆ ( Base ‘ 𝐺 ) ) |
| 23 | 1 | mrccl | ⊢ ( ( ( SubGrp ‘ 𝐺 ) ∈ ( Moore ‘ ( Base ‘ 𝐺 ) ) ∧ ∪ ran 𝑆 ⊆ ( Base ‘ 𝐺 ) ) → ( 𝐾 ‘ ∪ ran 𝑆 ) ∈ ( SubGrp ‘ 𝐺 ) ) |
| 24 | 8 22 23 | syl2anc | ⊢ ( 𝐺 dom DProd 𝑆 → ( 𝐾 ‘ ∪ ran 𝑆 ) ∈ ( SubGrp ‘ 𝐺 ) ) |
| 25 | eqimss | ⊢ ( ∪ 𝑘 ∈ dom 𝑆 ( 𝑆 ‘ 𝑘 ) = ∪ ran 𝑆 → ∪ 𝑘 ∈ dom 𝑆 ( 𝑆 ‘ 𝑘 ) ⊆ ∪ ran 𝑆 ) | |
| 26 | 12 25 | syl | ⊢ ( 𝐺 dom DProd 𝑆 → ∪ 𝑘 ∈ dom 𝑆 ( 𝑆 ‘ 𝑘 ) ⊆ ∪ ran 𝑆 ) |
| 27 | iunss | ⊢ ( ∪ 𝑘 ∈ dom 𝑆 ( 𝑆 ‘ 𝑘 ) ⊆ ∪ ran 𝑆 ↔ ∀ 𝑘 ∈ dom 𝑆 ( 𝑆 ‘ 𝑘 ) ⊆ ∪ ran 𝑆 ) | |
| 28 | 26 27 | sylib | ⊢ ( 𝐺 dom DProd 𝑆 → ∀ 𝑘 ∈ dom 𝑆 ( 𝑆 ‘ 𝑘 ) ⊆ ∪ ran 𝑆 ) |
| 29 | 28 | r19.21bi | ⊢ ( ( 𝐺 dom DProd 𝑆 ∧ 𝑘 ∈ dom 𝑆 ) → ( 𝑆 ‘ 𝑘 ) ⊆ ∪ ran 𝑆 ) |
| 30 | 8 1 22 | mrcssidd | ⊢ ( 𝐺 dom DProd 𝑆 → ∪ ran 𝑆 ⊆ ( 𝐾 ‘ ∪ ran 𝑆 ) ) |
| 31 | 30 | adantr | ⊢ ( ( 𝐺 dom DProd 𝑆 ∧ 𝑘 ∈ dom 𝑆 ) → ∪ ran 𝑆 ⊆ ( 𝐾 ‘ ∪ ran 𝑆 ) ) |
| 32 | 29 31 | sstrd | ⊢ ( ( 𝐺 dom DProd 𝑆 ∧ 𝑘 ∈ dom 𝑆 ) → ( 𝑆 ‘ 𝑘 ) ⊆ ( 𝐾 ‘ ∪ ran 𝑆 ) ) |
| 33 | 2 3 24 32 | dprdlub | ⊢ ( 𝐺 dom DProd 𝑆 → ( 𝐺 DProd 𝑆 ) ⊆ ( 𝐾 ‘ ∪ ran 𝑆 ) ) |
| 34 | dprdsubg | ⊢ ( 𝐺 dom DProd 𝑆 → ( 𝐺 DProd 𝑆 ) ∈ ( SubGrp ‘ 𝐺 ) ) | |
| 35 | 1 | mrcsscl | ⊢ ( ( ( SubGrp ‘ 𝐺 ) ∈ ( Moore ‘ ( Base ‘ 𝐺 ) ) ∧ ∪ ran 𝑆 ⊆ ( 𝐺 DProd 𝑆 ) ∧ ( 𝐺 DProd 𝑆 ) ∈ ( SubGrp ‘ 𝐺 ) ) → ( 𝐾 ‘ ∪ ran 𝑆 ) ⊆ ( 𝐺 DProd 𝑆 ) ) |
| 36 | 8 20 34 35 | syl3anc | ⊢ ( 𝐺 dom DProd 𝑆 → ( 𝐾 ‘ ∪ ran 𝑆 ) ⊆ ( 𝐺 DProd 𝑆 ) ) |
| 37 | 33 36 | eqssd | ⊢ ( 𝐺 dom DProd 𝑆 → ( 𝐺 DProd 𝑆 ) = ( 𝐾 ‘ ∪ ran 𝑆 ) ) |