This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for dfac12 . (Contributed by Mario Carneiro, 29-May-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | dfac12.1 | ⊢ ( 𝜑 → 𝐴 ∈ On ) | |
| dfac12.3 | ⊢ ( 𝜑 → 𝐹 : 𝒫 ( har ‘ ( 𝑅1 ‘ 𝐴 ) ) –1-1→ On ) | ||
| dfac12.4 | ⊢ 𝐺 = recs ( ( 𝑥 ∈ V ↦ ( 𝑦 ∈ ( 𝑅1 ‘ dom 𝑥 ) ↦ if ( dom 𝑥 = ∪ dom 𝑥 , ( ( suc ∪ ran ∪ ran 𝑥 ·o ( rank ‘ 𝑦 ) ) +o ( ( 𝑥 ‘ suc ( rank ‘ 𝑦 ) ) ‘ 𝑦 ) ) , ( 𝐹 ‘ ( ( ◡ OrdIso ( E , ran ( 𝑥 ‘ ∪ dom 𝑥 ) ) ∘ ( 𝑥 ‘ ∪ dom 𝑥 ) ) “ 𝑦 ) ) ) ) ) ) | ||
| dfac12.5 | ⊢ ( 𝜑 → 𝐶 ∈ On ) | ||
| dfac12.h | ⊢ 𝐻 = ( ◡ OrdIso ( E , ran ( 𝐺 ‘ ∪ 𝐶 ) ) ∘ ( 𝐺 ‘ ∪ 𝐶 ) ) | ||
| dfac12.6 | ⊢ ( 𝜑 → 𝐶 ⊆ 𝐴 ) | ||
| dfac12.8 | ⊢ ( 𝜑 → ∀ 𝑧 ∈ 𝐶 ( 𝐺 ‘ 𝑧 ) : ( 𝑅1 ‘ 𝑧 ) –1-1→ On ) | ||
| Assertion | dfac12lem2 | ⊢ ( 𝜑 → ( 𝐺 ‘ 𝐶 ) : ( 𝑅1 ‘ 𝐶 ) –1-1→ On ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dfac12.1 | ⊢ ( 𝜑 → 𝐴 ∈ On ) | |
| 2 | dfac12.3 | ⊢ ( 𝜑 → 𝐹 : 𝒫 ( har ‘ ( 𝑅1 ‘ 𝐴 ) ) –1-1→ On ) | |
| 3 | dfac12.4 | ⊢ 𝐺 = recs ( ( 𝑥 ∈ V ↦ ( 𝑦 ∈ ( 𝑅1 ‘ dom 𝑥 ) ↦ if ( dom 𝑥 = ∪ dom 𝑥 , ( ( suc ∪ ran ∪ ran 𝑥 ·o ( rank ‘ 𝑦 ) ) +o ( ( 𝑥 ‘ suc ( rank ‘ 𝑦 ) ) ‘ 𝑦 ) ) , ( 𝐹 ‘ ( ( ◡ OrdIso ( E , ran ( 𝑥 ‘ ∪ dom 𝑥 ) ) ∘ ( 𝑥 ‘ ∪ dom 𝑥 ) ) “ 𝑦 ) ) ) ) ) ) | |
| 4 | dfac12.5 | ⊢ ( 𝜑 → 𝐶 ∈ On ) | |
| 5 | dfac12.h | ⊢ 𝐻 = ( ◡ OrdIso ( E , ran ( 𝐺 ‘ ∪ 𝐶 ) ) ∘ ( 𝐺 ‘ ∪ 𝐶 ) ) | |
| 6 | dfac12.6 | ⊢ ( 𝜑 → 𝐶 ⊆ 𝐴 ) | |
| 7 | dfac12.8 | ⊢ ( 𝜑 → ∀ 𝑧 ∈ 𝐶 ( 𝐺 ‘ 𝑧 ) : ( 𝑅1 ‘ 𝑧 ) –1-1→ On ) | |
| 8 | 3 | tfr1 | ⊢ 𝐺 Fn On |
| 9 | fnfun | ⊢ ( 𝐺 Fn On → Fun 𝐺 ) | |
| 10 | 8 9 | ax-mp | ⊢ Fun 𝐺 |
| 11 | funimaexg | ⊢ ( ( Fun 𝐺 ∧ 𝐶 ∈ On ) → ( 𝐺 “ 𝐶 ) ∈ V ) | |
| 12 | 10 4 11 | sylancr | ⊢ ( 𝜑 → ( 𝐺 “ 𝐶 ) ∈ V ) |
| 13 | uniexg | ⊢ ( ( 𝐺 “ 𝐶 ) ∈ V → ∪ ( 𝐺 “ 𝐶 ) ∈ V ) | |
| 14 | rnexg | ⊢ ( ∪ ( 𝐺 “ 𝐶 ) ∈ V → ran ∪ ( 𝐺 “ 𝐶 ) ∈ V ) | |
| 15 | 12 13 14 | 3syl | ⊢ ( 𝜑 → ran ∪ ( 𝐺 “ 𝐶 ) ∈ V ) |
| 16 | f1f | ⊢ ( ( 𝐺 ‘ 𝑧 ) : ( 𝑅1 ‘ 𝑧 ) –1-1→ On → ( 𝐺 ‘ 𝑧 ) : ( 𝑅1 ‘ 𝑧 ) ⟶ On ) | |
| 17 | fssxp | ⊢ ( ( 𝐺 ‘ 𝑧 ) : ( 𝑅1 ‘ 𝑧 ) ⟶ On → ( 𝐺 ‘ 𝑧 ) ⊆ ( ( 𝑅1 ‘ 𝑧 ) × On ) ) | |
| 18 | ssv | ⊢ ( 𝑅1 ‘ 𝑧 ) ⊆ V | |
| 19 | xpss1 | ⊢ ( ( 𝑅1 ‘ 𝑧 ) ⊆ V → ( ( 𝑅1 ‘ 𝑧 ) × On ) ⊆ ( V × On ) ) | |
| 20 | 18 19 | ax-mp | ⊢ ( ( 𝑅1 ‘ 𝑧 ) × On ) ⊆ ( V × On ) |
| 21 | sstr | ⊢ ( ( ( 𝐺 ‘ 𝑧 ) ⊆ ( ( 𝑅1 ‘ 𝑧 ) × On ) ∧ ( ( 𝑅1 ‘ 𝑧 ) × On ) ⊆ ( V × On ) ) → ( 𝐺 ‘ 𝑧 ) ⊆ ( V × On ) ) | |
| 22 | 20 21 | mpan2 | ⊢ ( ( 𝐺 ‘ 𝑧 ) ⊆ ( ( 𝑅1 ‘ 𝑧 ) × On ) → ( 𝐺 ‘ 𝑧 ) ⊆ ( V × On ) ) |
| 23 | fvex | ⊢ ( 𝐺 ‘ 𝑧 ) ∈ V | |
| 24 | 23 | elpw | ⊢ ( ( 𝐺 ‘ 𝑧 ) ∈ 𝒫 ( V × On ) ↔ ( 𝐺 ‘ 𝑧 ) ⊆ ( V × On ) ) |
| 25 | 22 24 | sylibr | ⊢ ( ( 𝐺 ‘ 𝑧 ) ⊆ ( ( 𝑅1 ‘ 𝑧 ) × On ) → ( 𝐺 ‘ 𝑧 ) ∈ 𝒫 ( V × On ) ) |
| 26 | 16 17 25 | 3syl | ⊢ ( ( 𝐺 ‘ 𝑧 ) : ( 𝑅1 ‘ 𝑧 ) –1-1→ On → ( 𝐺 ‘ 𝑧 ) ∈ 𝒫 ( V × On ) ) |
| 27 | 26 | ralimi | ⊢ ( ∀ 𝑧 ∈ 𝐶 ( 𝐺 ‘ 𝑧 ) : ( 𝑅1 ‘ 𝑧 ) –1-1→ On → ∀ 𝑧 ∈ 𝐶 ( 𝐺 ‘ 𝑧 ) ∈ 𝒫 ( V × On ) ) |
| 28 | 7 27 | syl | ⊢ ( 𝜑 → ∀ 𝑧 ∈ 𝐶 ( 𝐺 ‘ 𝑧 ) ∈ 𝒫 ( V × On ) ) |
| 29 | onss | ⊢ ( 𝐶 ∈ On → 𝐶 ⊆ On ) | |
| 30 | 4 29 | syl | ⊢ ( 𝜑 → 𝐶 ⊆ On ) |
| 31 | 8 | fndmi | ⊢ dom 𝐺 = On |
| 32 | 30 31 | sseqtrrdi | ⊢ ( 𝜑 → 𝐶 ⊆ dom 𝐺 ) |
| 33 | funimass4 | ⊢ ( ( Fun 𝐺 ∧ 𝐶 ⊆ dom 𝐺 ) → ( ( 𝐺 “ 𝐶 ) ⊆ 𝒫 ( V × On ) ↔ ∀ 𝑧 ∈ 𝐶 ( 𝐺 ‘ 𝑧 ) ∈ 𝒫 ( V × On ) ) ) | |
| 34 | 10 32 33 | sylancr | ⊢ ( 𝜑 → ( ( 𝐺 “ 𝐶 ) ⊆ 𝒫 ( V × On ) ↔ ∀ 𝑧 ∈ 𝐶 ( 𝐺 ‘ 𝑧 ) ∈ 𝒫 ( V × On ) ) ) |
| 35 | 28 34 | mpbird | ⊢ ( 𝜑 → ( 𝐺 “ 𝐶 ) ⊆ 𝒫 ( V × On ) ) |
| 36 | sspwuni | ⊢ ( ( 𝐺 “ 𝐶 ) ⊆ 𝒫 ( V × On ) ↔ ∪ ( 𝐺 “ 𝐶 ) ⊆ ( V × On ) ) | |
| 37 | 35 36 | sylib | ⊢ ( 𝜑 → ∪ ( 𝐺 “ 𝐶 ) ⊆ ( V × On ) ) |
| 38 | rnss | ⊢ ( ∪ ( 𝐺 “ 𝐶 ) ⊆ ( V × On ) → ran ∪ ( 𝐺 “ 𝐶 ) ⊆ ran ( V × On ) ) | |
| 39 | 37 38 | syl | ⊢ ( 𝜑 → ran ∪ ( 𝐺 “ 𝐶 ) ⊆ ran ( V × On ) ) |
| 40 | rnxpss | ⊢ ran ( V × On ) ⊆ On | |
| 41 | 39 40 | sstrdi | ⊢ ( 𝜑 → ran ∪ ( 𝐺 “ 𝐶 ) ⊆ On ) |
| 42 | ssonuni | ⊢ ( ran ∪ ( 𝐺 “ 𝐶 ) ∈ V → ( ran ∪ ( 𝐺 “ 𝐶 ) ⊆ On → ∪ ran ∪ ( 𝐺 “ 𝐶 ) ∈ On ) ) | |
| 43 | 15 41 42 | sylc | ⊢ ( 𝜑 → ∪ ran ∪ ( 𝐺 “ 𝐶 ) ∈ On ) |
| 44 | onsuc | ⊢ ( ∪ ran ∪ ( 𝐺 “ 𝐶 ) ∈ On → suc ∪ ran ∪ ( 𝐺 “ 𝐶 ) ∈ On ) | |
| 45 | 43 44 | syl | ⊢ ( 𝜑 → suc ∪ ran ∪ ( 𝐺 “ 𝐶 ) ∈ On ) |
| 46 | 45 | ad2antrr | ⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ( 𝑅1 ‘ 𝐶 ) ) ∧ 𝐶 = ∪ 𝐶 ) → suc ∪ ran ∪ ( 𝐺 “ 𝐶 ) ∈ On ) |
| 47 | rankon | ⊢ ( rank ‘ 𝑦 ) ∈ On | |
| 48 | omcl | ⊢ ( ( suc ∪ ran ∪ ( 𝐺 “ 𝐶 ) ∈ On ∧ ( rank ‘ 𝑦 ) ∈ On ) → ( suc ∪ ran ∪ ( 𝐺 “ 𝐶 ) ·o ( rank ‘ 𝑦 ) ) ∈ On ) | |
| 49 | 46 47 48 | sylancl | ⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ( 𝑅1 ‘ 𝐶 ) ) ∧ 𝐶 = ∪ 𝐶 ) → ( suc ∪ ran ∪ ( 𝐺 “ 𝐶 ) ·o ( rank ‘ 𝑦 ) ) ∈ On ) |
| 50 | fveq2 | ⊢ ( 𝑧 = suc ( rank ‘ 𝑦 ) → ( 𝐺 ‘ 𝑧 ) = ( 𝐺 ‘ suc ( rank ‘ 𝑦 ) ) ) | |
| 51 | f1eq1 | ⊢ ( ( 𝐺 ‘ 𝑧 ) = ( 𝐺 ‘ suc ( rank ‘ 𝑦 ) ) → ( ( 𝐺 ‘ 𝑧 ) : ( 𝑅1 ‘ 𝑧 ) –1-1→ On ↔ ( 𝐺 ‘ suc ( rank ‘ 𝑦 ) ) : ( 𝑅1 ‘ 𝑧 ) –1-1→ On ) ) | |
| 52 | 50 51 | syl | ⊢ ( 𝑧 = suc ( rank ‘ 𝑦 ) → ( ( 𝐺 ‘ 𝑧 ) : ( 𝑅1 ‘ 𝑧 ) –1-1→ On ↔ ( 𝐺 ‘ suc ( rank ‘ 𝑦 ) ) : ( 𝑅1 ‘ 𝑧 ) –1-1→ On ) ) |
| 53 | fveq2 | ⊢ ( 𝑧 = suc ( rank ‘ 𝑦 ) → ( 𝑅1 ‘ 𝑧 ) = ( 𝑅1 ‘ suc ( rank ‘ 𝑦 ) ) ) | |
| 54 | f1eq2 | ⊢ ( ( 𝑅1 ‘ 𝑧 ) = ( 𝑅1 ‘ suc ( rank ‘ 𝑦 ) ) → ( ( 𝐺 ‘ suc ( rank ‘ 𝑦 ) ) : ( 𝑅1 ‘ 𝑧 ) –1-1→ On ↔ ( 𝐺 ‘ suc ( rank ‘ 𝑦 ) ) : ( 𝑅1 ‘ suc ( rank ‘ 𝑦 ) ) –1-1→ On ) ) | |
| 55 | 53 54 | syl | ⊢ ( 𝑧 = suc ( rank ‘ 𝑦 ) → ( ( 𝐺 ‘ suc ( rank ‘ 𝑦 ) ) : ( 𝑅1 ‘ 𝑧 ) –1-1→ On ↔ ( 𝐺 ‘ suc ( rank ‘ 𝑦 ) ) : ( 𝑅1 ‘ suc ( rank ‘ 𝑦 ) ) –1-1→ On ) ) |
| 56 | 52 55 | bitrd | ⊢ ( 𝑧 = suc ( rank ‘ 𝑦 ) → ( ( 𝐺 ‘ 𝑧 ) : ( 𝑅1 ‘ 𝑧 ) –1-1→ On ↔ ( 𝐺 ‘ suc ( rank ‘ 𝑦 ) ) : ( 𝑅1 ‘ suc ( rank ‘ 𝑦 ) ) –1-1→ On ) ) |
| 57 | 7 | ad2antrr | ⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ( 𝑅1 ‘ 𝐶 ) ) ∧ 𝐶 = ∪ 𝐶 ) → ∀ 𝑧 ∈ 𝐶 ( 𝐺 ‘ 𝑧 ) : ( 𝑅1 ‘ 𝑧 ) –1-1→ On ) |
| 58 | rankr1ai | ⊢ ( 𝑦 ∈ ( 𝑅1 ‘ 𝐶 ) → ( rank ‘ 𝑦 ) ∈ 𝐶 ) | |
| 59 | 58 | ad2antlr | ⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ( 𝑅1 ‘ 𝐶 ) ) ∧ 𝐶 = ∪ 𝐶 ) → ( rank ‘ 𝑦 ) ∈ 𝐶 ) |
| 60 | simpr | ⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ( 𝑅1 ‘ 𝐶 ) ) ∧ 𝐶 = ∪ 𝐶 ) → 𝐶 = ∪ 𝐶 ) | |
| 61 | 59 60 | eleqtrd | ⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ( 𝑅1 ‘ 𝐶 ) ) ∧ 𝐶 = ∪ 𝐶 ) → ( rank ‘ 𝑦 ) ∈ ∪ 𝐶 ) |
| 62 | eloni | ⊢ ( 𝐶 ∈ On → Ord 𝐶 ) | |
| 63 | 4 62 | syl | ⊢ ( 𝜑 → Ord 𝐶 ) |
| 64 | 63 | ad2antrr | ⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ( 𝑅1 ‘ 𝐶 ) ) ∧ 𝐶 = ∪ 𝐶 ) → Ord 𝐶 ) |
| 65 | ordsucuniel | ⊢ ( Ord 𝐶 → ( ( rank ‘ 𝑦 ) ∈ ∪ 𝐶 ↔ suc ( rank ‘ 𝑦 ) ∈ 𝐶 ) ) | |
| 66 | 64 65 | syl | ⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ( 𝑅1 ‘ 𝐶 ) ) ∧ 𝐶 = ∪ 𝐶 ) → ( ( rank ‘ 𝑦 ) ∈ ∪ 𝐶 ↔ suc ( rank ‘ 𝑦 ) ∈ 𝐶 ) ) |
| 67 | 61 66 | mpbid | ⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ( 𝑅1 ‘ 𝐶 ) ) ∧ 𝐶 = ∪ 𝐶 ) → suc ( rank ‘ 𝑦 ) ∈ 𝐶 ) |
| 68 | 56 57 67 | rspcdva | ⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ( 𝑅1 ‘ 𝐶 ) ) ∧ 𝐶 = ∪ 𝐶 ) → ( 𝐺 ‘ suc ( rank ‘ 𝑦 ) ) : ( 𝑅1 ‘ suc ( rank ‘ 𝑦 ) ) –1-1→ On ) |
| 69 | f1f | ⊢ ( ( 𝐺 ‘ suc ( rank ‘ 𝑦 ) ) : ( 𝑅1 ‘ suc ( rank ‘ 𝑦 ) ) –1-1→ On → ( 𝐺 ‘ suc ( rank ‘ 𝑦 ) ) : ( 𝑅1 ‘ suc ( rank ‘ 𝑦 ) ) ⟶ On ) | |
| 70 | 68 69 | syl | ⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ( 𝑅1 ‘ 𝐶 ) ) ∧ 𝐶 = ∪ 𝐶 ) → ( 𝐺 ‘ suc ( rank ‘ 𝑦 ) ) : ( 𝑅1 ‘ suc ( rank ‘ 𝑦 ) ) ⟶ On ) |
| 71 | r1elwf | ⊢ ( 𝑦 ∈ ( 𝑅1 ‘ 𝐶 ) → 𝑦 ∈ ∪ ( 𝑅1 “ On ) ) | |
| 72 | 71 | ad2antlr | ⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ( 𝑅1 ‘ 𝐶 ) ) ∧ 𝐶 = ∪ 𝐶 ) → 𝑦 ∈ ∪ ( 𝑅1 “ On ) ) |
| 73 | rankidb | ⊢ ( 𝑦 ∈ ∪ ( 𝑅1 “ On ) → 𝑦 ∈ ( 𝑅1 ‘ suc ( rank ‘ 𝑦 ) ) ) | |
| 74 | 72 73 | syl | ⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ( 𝑅1 ‘ 𝐶 ) ) ∧ 𝐶 = ∪ 𝐶 ) → 𝑦 ∈ ( 𝑅1 ‘ suc ( rank ‘ 𝑦 ) ) ) |
| 75 | 70 74 | ffvelcdmd | ⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ( 𝑅1 ‘ 𝐶 ) ) ∧ 𝐶 = ∪ 𝐶 ) → ( ( 𝐺 ‘ suc ( rank ‘ 𝑦 ) ) ‘ 𝑦 ) ∈ On ) |
| 76 | oacl | ⊢ ( ( ( suc ∪ ran ∪ ( 𝐺 “ 𝐶 ) ·o ( rank ‘ 𝑦 ) ) ∈ On ∧ ( ( 𝐺 ‘ suc ( rank ‘ 𝑦 ) ) ‘ 𝑦 ) ∈ On ) → ( ( suc ∪ ran ∪ ( 𝐺 “ 𝐶 ) ·o ( rank ‘ 𝑦 ) ) +o ( ( 𝐺 ‘ suc ( rank ‘ 𝑦 ) ) ‘ 𝑦 ) ) ∈ On ) | |
| 77 | 49 75 76 | syl2anc | ⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ( 𝑅1 ‘ 𝐶 ) ) ∧ 𝐶 = ∪ 𝐶 ) → ( ( suc ∪ ran ∪ ( 𝐺 “ 𝐶 ) ·o ( rank ‘ 𝑦 ) ) +o ( ( 𝐺 ‘ suc ( rank ‘ 𝑦 ) ) ‘ 𝑦 ) ) ∈ On ) |
| 78 | f1f | ⊢ ( 𝐹 : 𝒫 ( har ‘ ( 𝑅1 ‘ 𝐴 ) ) –1-1→ On → 𝐹 : 𝒫 ( har ‘ ( 𝑅1 ‘ 𝐴 ) ) ⟶ On ) | |
| 79 | 2 78 | syl | ⊢ ( 𝜑 → 𝐹 : 𝒫 ( har ‘ ( 𝑅1 ‘ 𝐴 ) ) ⟶ On ) |
| 80 | 79 | ad2antrr | ⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ( 𝑅1 ‘ 𝐶 ) ) ∧ ¬ 𝐶 = ∪ 𝐶 ) → 𝐹 : 𝒫 ( har ‘ ( 𝑅1 ‘ 𝐴 ) ) ⟶ On ) |
| 81 | imassrn | ⊢ ( 𝐻 “ 𝑦 ) ⊆ ran 𝐻 | |
| 82 | fvex | ⊢ ( 𝐺 ‘ ∪ 𝐶 ) ∈ V | |
| 83 | 82 | rnex | ⊢ ran ( 𝐺 ‘ ∪ 𝐶 ) ∈ V |
| 84 | fveq2 | ⊢ ( 𝑧 = ∪ 𝐶 → ( 𝐺 ‘ 𝑧 ) = ( 𝐺 ‘ ∪ 𝐶 ) ) | |
| 85 | f1eq1 | ⊢ ( ( 𝐺 ‘ 𝑧 ) = ( 𝐺 ‘ ∪ 𝐶 ) → ( ( 𝐺 ‘ 𝑧 ) : ( 𝑅1 ‘ 𝑧 ) –1-1→ On ↔ ( 𝐺 ‘ ∪ 𝐶 ) : ( 𝑅1 ‘ 𝑧 ) –1-1→ On ) ) | |
| 86 | 84 85 | syl | ⊢ ( 𝑧 = ∪ 𝐶 → ( ( 𝐺 ‘ 𝑧 ) : ( 𝑅1 ‘ 𝑧 ) –1-1→ On ↔ ( 𝐺 ‘ ∪ 𝐶 ) : ( 𝑅1 ‘ 𝑧 ) –1-1→ On ) ) |
| 87 | fveq2 | ⊢ ( 𝑧 = ∪ 𝐶 → ( 𝑅1 ‘ 𝑧 ) = ( 𝑅1 ‘ ∪ 𝐶 ) ) | |
| 88 | f1eq2 | ⊢ ( ( 𝑅1 ‘ 𝑧 ) = ( 𝑅1 ‘ ∪ 𝐶 ) → ( ( 𝐺 ‘ ∪ 𝐶 ) : ( 𝑅1 ‘ 𝑧 ) –1-1→ On ↔ ( 𝐺 ‘ ∪ 𝐶 ) : ( 𝑅1 ‘ ∪ 𝐶 ) –1-1→ On ) ) | |
| 89 | 87 88 | syl | ⊢ ( 𝑧 = ∪ 𝐶 → ( ( 𝐺 ‘ ∪ 𝐶 ) : ( 𝑅1 ‘ 𝑧 ) –1-1→ On ↔ ( 𝐺 ‘ ∪ 𝐶 ) : ( 𝑅1 ‘ ∪ 𝐶 ) –1-1→ On ) ) |
| 90 | 86 89 | bitrd | ⊢ ( 𝑧 = ∪ 𝐶 → ( ( 𝐺 ‘ 𝑧 ) : ( 𝑅1 ‘ 𝑧 ) –1-1→ On ↔ ( 𝐺 ‘ ∪ 𝐶 ) : ( 𝑅1 ‘ ∪ 𝐶 ) –1-1→ On ) ) |
| 91 | 7 | ad2antrr | ⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ( 𝑅1 ‘ 𝐶 ) ) ∧ ¬ 𝐶 = ∪ 𝐶 ) → ∀ 𝑧 ∈ 𝐶 ( 𝐺 ‘ 𝑧 ) : ( 𝑅1 ‘ 𝑧 ) –1-1→ On ) |
| 92 | 4 | ad2antrr | ⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ( 𝑅1 ‘ 𝐶 ) ) ∧ ¬ 𝐶 = ∪ 𝐶 ) → 𝐶 ∈ On ) |
| 93 | onuni | ⊢ ( 𝐶 ∈ On → ∪ 𝐶 ∈ On ) | |
| 94 | sucidg | ⊢ ( ∪ 𝐶 ∈ On → ∪ 𝐶 ∈ suc ∪ 𝐶 ) | |
| 95 | 92 93 94 | 3syl | ⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ( 𝑅1 ‘ 𝐶 ) ) ∧ ¬ 𝐶 = ∪ 𝐶 ) → ∪ 𝐶 ∈ suc ∪ 𝐶 ) |
| 96 | 63 | adantr | ⊢ ( ( 𝜑 ∧ 𝑦 ∈ ( 𝑅1 ‘ 𝐶 ) ) → Ord 𝐶 ) |
| 97 | orduniorsuc | ⊢ ( Ord 𝐶 → ( 𝐶 = ∪ 𝐶 ∨ 𝐶 = suc ∪ 𝐶 ) ) | |
| 98 | 96 97 | syl | ⊢ ( ( 𝜑 ∧ 𝑦 ∈ ( 𝑅1 ‘ 𝐶 ) ) → ( 𝐶 = ∪ 𝐶 ∨ 𝐶 = suc ∪ 𝐶 ) ) |
| 99 | 98 | orcanai | ⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ( 𝑅1 ‘ 𝐶 ) ) ∧ ¬ 𝐶 = ∪ 𝐶 ) → 𝐶 = suc ∪ 𝐶 ) |
| 100 | 95 99 | eleqtrrd | ⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ( 𝑅1 ‘ 𝐶 ) ) ∧ ¬ 𝐶 = ∪ 𝐶 ) → ∪ 𝐶 ∈ 𝐶 ) |
| 101 | 90 91 100 | rspcdva | ⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ( 𝑅1 ‘ 𝐶 ) ) ∧ ¬ 𝐶 = ∪ 𝐶 ) → ( 𝐺 ‘ ∪ 𝐶 ) : ( 𝑅1 ‘ ∪ 𝐶 ) –1-1→ On ) |
| 102 | f1f | ⊢ ( ( 𝐺 ‘ ∪ 𝐶 ) : ( 𝑅1 ‘ ∪ 𝐶 ) –1-1→ On → ( 𝐺 ‘ ∪ 𝐶 ) : ( 𝑅1 ‘ ∪ 𝐶 ) ⟶ On ) | |
| 103 | frn | ⊢ ( ( 𝐺 ‘ ∪ 𝐶 ) : ( 𝑅1 ‘ ∪ 𝐶 ) ⟶ On → ran ( 𝐺 ‘ ∪ 𝐶 ) ⊆ On ) | |
| 104 | 101 102 103 | 3syl | ⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ( 𝑅1 ‘ 𝐶 ) ) ∧ ¬ 𝐶 = ∪ 𝐶 ) → ran ( 𝐺 ‘ ∪ 𝐶 ) ⊆ On ) |
| 105 | epweon | ⊢ E We On | |
| 106 | wess | ⊢ ( ran ( 𝐺 ‘ ∪ 𝐶 ) ⊆ On → ( E We On → E We ran ( 𝐺 ‘ ∪ 𝐶 ) ) ) | |
| 107 | 104 105 106 | mpisyl | ⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ( 𝑅1 ‘ 𝐶 ) ) ∧ ¬ 𝐶 = ∪ 𝐶 ) → E We ran ( 𝐺 ‘ ∪ 𝐶 ) ) |
| 108 | eqid | ⊢ OrdIso ( E , ran ( 𝐺 ‘ ∪ 𝐶 ) ) = OrdIso ( E , ran ( 𝐺 ‘ ∪ 𝐶 ) ) | |
| 109 | 108 | oiiso | ⊢ ( ( ran ( 𝐺 ‘ ∪ 𝐶 ) ∈ V ∧ E We ran ( 𝐺 ‘ ∪ 𝐶 ) ) → OrdIso ( E , ran ( 𝐺 ‘ ∪ 𝐶 ) ) Isom E , E ( dom OrdIso ( E , ran ( 𝐺 ‘ ∪ 𝐶 ) ) , ran ( 𝐺 ‘ ∪ 𝐶 ) ) ) |
| 110 | 83 107 109 | sylancr | ⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ( 𝑅1 ‘ 𝐶 ) ) ∧ ¬ 𝐶 = ∪ 𝐶 ) → OrdIso ( E , ran ( 𝐺 ‘ ∪ 𝐶 ) ) Isom E , E ( dom OrdIso ( E , ran ( 𝐺 ‘ ∪ 𝐶 ) ) , ran ( 𝐺 ‘ ∪ 𝐶 ) ) ) |
| 111 | isof1o | ⊢ ( OrdIso ( E , ran ( 𝐺 ‘ ∪ 𝐶 ) ) Isom E , E ( dom OrdIso ( E , ran ( 𝐺 ‘ ∪ 𝐶 ) ) , ran ( 𝐺 ‘ ∪ 𝐶 ) ) → OrdIso ( E , ran ( 𝐺 ‘ ∪ 𝐶 ) ) : dom OrdIso ( E , ran ( 𝐺 ‘ ∪ 𝐶 ) ) –1-1-onto→ ran ( 𝐺 ‘ ∪ 𝐶 ) ) | |
| 112 | f1ocnv | ⊢ ( OrdIso ( E , ran ( 𝐺 ‘ ∪ 𝐶 ) ) : dom OrdIso ( E , ran ( 𝐺 ‘ ∪ 𝐶 ) ) –1-1-onto→ ran ( 𝐺 ‘ ∪ 𝐶 ) → ◡ OrdIso ( E , ran ( 𝐺 ‘ ∪ 𝐶 ) ) : ran ( 𝐺 ‘ ∪ 𝐶 ) –1-1-onto→ dom OrdIso ( E , ran ( 𝐺 ‘ ∪ 𝐶 ) ) ) | |
| 113 | f1of1 | ⊢ ( ◡ OrdIso ( E , ran ( 𝐺 ‘ ∪ 𝐶 ) ) : ran ( 𝐺 ‘ ∪ 𝐶 ) –1-1-onto→ dom OrdIso ( E , ran ( 𝐺 ‘ ∪ 𝐶 ) ) → ◡ OrdIso ( E , ran ( 𝐺 ‘ ∪ 𝐶 ) ) : ran ( 𝐺 ‘ ∪ 𝐶 ) –1-1→ dom OrdIso ( E , ran ( 𝐺 ‘ ∪ 𝐶 ) ) ) | |
| 114 | 110 111 112 113 | 4syl | ⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ( 𝑅1 ‘ 𝐶 ) ) ∧ ¬ 𝐶 = ∪ 𝐶 ) → ◡ OrdIso ( E , ran ( 𝐺 ‘ ∪ 𝐶 ) ) : ran ( 𝐺 ‘ ∪ 𝐶 ) –1-1→ dom OrdIso ( E , ran ( 𝐺 ‘ ∪ 𝐶 ) ) ) |
| 115 | f1f1orn | ⊢ ( ( 𝐺 ‘ ∪ 𝐶 ) : ( 𝑅1 ‘ ∪ 𝐶 ) –1-1→ On → ( 𝐺 ‘ ∪ 𝐶 ) : ( 𝑅1 ‘ ∪ 𝐶 ) –1-1-onto→ ran ( 𝐺 ‘ ∪ 𝐶 ) ) | |
| 116 | f1of1 | ⊢ ( ( 𝐺 ‘ ∪ 𝐶 ) : ( 𝑅1 ‘ ∪ 𝐶 ) –1-1-onto→ ran ( 𝐺 ‘ ∪ 𝐶 ) → ( 𝐺 ‘ ∪ 𝐶 ) : ( 𝑅1 ‘ ∪ 𝐶 ) –1-1→ ran ( 𝐺 ‘ ∪ 𝐶 ) ) | |
| 117 | 101 115 116 | 3syl | ⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ( 𝑅1 ‘ 𝐶 ) ) ∧ ¬ 𝐶 = ∪ 𝐶 ) → ( 𝐺 ‘ ∪ 𝐶 ) : ( 𝑅1 ‘ ∪ 𝐶 ) –1-1→ ran ( 𝐺 ‘ ∪ 𝐶 ) ) |
| 118 | f1co | ⊢ ( ( ◡ OrdIso ( E , ran ( 𝐺 ‘ ∪ 𝐶 ) ) : ran ( 𝐺 ‘ ∪ 𝐶 ) –1-1→ dom OrdIso ( E , ran ( 𝐺 ‘ ∪ 𝐶 ) ) ∧ ( 𝐺 ‘ ∪ 𝐶 ) : ( 𝑅1 ‘ ∪ 𝐶 ) –1-1→ ran ( 𝐺 ‘ ∪ 𝐶 ) ) → ( ◡ OrdIso ( E , ran ( 𝐺 ‘ ∪ 𝐶 ) ) ∘ ( 𝐺 ‘ ∪ 𝐶 ) ) : ( 𝑅1 ‘ ∪ 𝐶 ) –1-1→ dom OrdIso ( E , ran ( 𝐺 ‘ ∪ 𝐶 ) ) ) | |
| 119 | 114 117 118 | syl2anc | ⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ( 𝑅1 ‘ 𝐶 ) ) ∧ ¬ 𝐶 = ∪ 𝐶 ) → ( ◡ OrdIso ( E , ran ( 𝐺 ‘ ∪ 𝐶 ) ) ∘ ( 𝐺 ‘ ∪ 𝐶 ) ) : ( 𝑅1 ‘ ∪ 𝐶 ) –1-1→ dom OrdIso ( E , ran ( 𝐺 ‘ ∪ 𝐶 ) ) ) |
| 120 | f1eq1 | ⊢ ( 𝐻 = ( ◡ OrdIso ( E , ran ( 𝐺 ‘ ∪ 𝐶 ) ) ∘ ( 𝐺 ‘ ∪ 𝐶 ) ) → ( 𝐻 : ( 𝑅1 ‘ ∪ 𝐶 ) –1-1→ dom OrdIso ( E , ran ( 𝐺 ‘ ∪ 𝐶 ) ) ↔ ( ◡ OrdIso ( E , ran ( 𝐺 ‘ ∪ 𝐶 ) ) ∘ ( 𝐺 ‘ ∪ 𝐶 ) ) : ( 𝑅1 ‘ ∪ 𝐶 ) –1-1→ dom OrdIso ( E , ran ( 𝐺 ‘ ∪ 𝐶 ) ) ) ) | |
| 121 | 5 120 | ax-mp | ⊢ ( 𝐻 : ( 𝑅1 ‘ ∪ 𝐶 ) –1-1→ dom OrdIso ( E , ran ( 𝐺 ‘ ∪ 𝐶 ) ) ↔ ( ◡ OrdIso ( E , ran ( 𝐺 ‘ ∪ 𝐶 ) ) ∘ ( 𝐺 ‘ ∪ 𝐶 ) ) : ( 𝑅1 ‘ ∪ 𝐶 ) –1-1→ dom OrdIso ( E , ran ( 𝐺 ‘ ∪ 𝐶 ) ) ) |
| 122 | 119 121 | sylibr | ⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ( 𝑅1 ‘ 𝐶 ) ) ∧ ¬ 𝐶 = ∪ 𝐶 ) → 𝐻 : ( 𝑅1 ‘ ∪ 𝐶 ) –1-1→ dom OrdIso ( E , ran ( 𝐺 ‘ ∪ 𝐶 ) ) ) |
| 123 | f1f | ⊢ ( 𝐻 : ( 𝑅1 ‘ ∪ 𝐶 ) –1-1→ dom OrdIso ( E , ran ( 𝐺 ‘ ∪ 𝐶 ) ) → 𝐻 : ( 𝑅1 ‘ ∪ 𝐶 ) ⟶ dom OrdIso ( E , ran ( 𝐺 ‘ ∪ 𝐶 ) ) ) | |
| 124 | frn | ⊢ ( 𝐻 : ( 𝑅1 ‘ ∪ 𝐶 ) ⟶ dom OrdIso ( E , ran ( 𝐺 ‘ ∪ 𝐶 ) ) → ran 𝐻 ⊆ dom OrdIso ( E , ran ( 𝐺 ‘ ∪ 𝐶 ) ) ) | |
| 125 | 122 123 124 | 3syl | ⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ( 𝑅1 ‘ 𝐶 ) ) ∧ ¬ 𝐶 = ∪ 𝐶 ) → ran 𝐻 ⊆ dom OrdIso ( E , ran ( 𝐺 ‘ ∪ 𝐶 ) ) ) |
| 126 | harcl | ⊢ ( har ‘ ( 𝑅1 ‘ 𝐴 ) ) ∈ On | |
| 127 | 126 | onordi | ⊢ Ord ( har ‘ ( 𝑅1 ‘ 𝐴 ) ) |
| 128 | 108 | oion | ⊢ ( ran ( 𝐺 ‘ ∪ 𝐶 ) ∈ V → dom OrdIso ( E , ran ( 𝐺 ‘ ∪ 𝐶 ) ) ∈ On ) |
| 129 | 83 128 | mp1i | ⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ( 𝑅1 ‘ 𝐶 ) ) ∧ ¬ 𝐶 = ∪ 𝐶 ) → dom OrdIso ( E , ran ( 𝐺 ‘ ∪ 𝐶 ) ) ∈ On ) |
| 130 | 108 | oien | ⊢ ( ( ran ( 𝐺 ‘ ∪ 𝐶 ) ∈ V ∧ E We ran ( 𝐺 ‘ ∪ 𝐶 ) ) → dom OrdIso ( E , ran ( 𝐺 ‘ ∪ 𝐶 ) ) ≈ ran ( 𝐺 ‘ ∪ 𝐶 ) ) |
| 131 | 83 107 130 | sylancr | ⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ( 𝑅1 ‘ 𝐶 ) ) ∧ ¬ 𝐶 = ∪ 𝐶 ) → dom OrdIso ( E , ran ( 𝐺 ‘ ∪ 𝐶 ) ) ≈ ran ( 𝐺 ‘ ∪ 𝐶 ) ) |
| 132 | fvex | ⊢ ( 𝑅1 ‘ ∪ 𝐶 ) ∈ V | |
| 133 | 132 | f1oen | ⊢ ( ( 𝐺 ‘ ∪ 𝐶 ) : ( 𝑅1 ‘ ∪ 𝐶 ) –1-1-onto→ ran ( 𝐺 ‘ ∪ 𝐶 ) → ( 𝑅1 ‘ ∪ 𝐶 ) ≈ ran ( 𝐺 ‘ ∪ 𝐶 ) ) |
| 134 | ensym | ⊢ ( ( 𝑅1 ‘ ∪ 𝐶 ) ≈ ran ( 𝐺 ‘ ∪ 𝐶 ) → ran ( 𝐺 ‘ ∪ 𝐶 ) ≈ ( 𝑅1 ‘ ∪ 𝐶 ) ) | |
| 135 | 101 115 133 134 | 4syl | ⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ( 𝑅1 ‘ 𝐶 ) ) ∧ ¬ 𝐶 = ∪ 𝐶 ) → ran ( 𝐺 ‘ ∪ 𝐶 ) ≈ ( 𝑅1 ‘ ∪ 𝐶 ) ) |
| 136 | fvex | ⊢ ( 𝑅1 ‘ 𝐴 ) ∈ V | |
| 137 | 1 | ad2antrr | ⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ( 𝑅1 ‘ 𝐶 ) ) ∧ ¬ 𝐶 = ∪ 𝐶 ) → 𝐴 ∈ On ) |
| 138 | 6 | ad2antrr | ⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ( 𝑅1 ‘ 𝐶 ) ) ∧ ¬ 𝐶 = ∪ 𝐶 ) → 𝐶 ⊆ 𝐴 ) |
| 139 | 138 100 | sseldd | ⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ( 𝑅1 ‘ 𝐶 ) ) ∧ ¬ 𝐶 = ∪ 𝐶 ) → ∪ 𝐶 ∈ 𝐴 ) |
| 140 | r1ord2 | ⊢ ( 𝐴 ∈ On → ( ∪ 𝐶 ∈ 𝐴 → ( 𝑅1 ‘ ∪ 𝐶 ) ⊆ ( 𝑅1 ‘ 𝐴 ) ) ) | |
| 141 | 137 139 140 | sylc | ⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ( 𝑅1 ‘ 𝐶 ) ) ∧ ¬ 𝐶 = ∪ 𝐶 ) → ( 𝑅1 ‘ ∪ 𝐶 ) ⊆ ( 𝑅1 ‘ 𝐴 ) ) |
| 142 | ssdomg | ⊢ ( ( 𝑅1 ‘ 𝐴 ) ∈ V → ( ( 𝑅1 ‘ ∪ 𝐶 ) ⊆ ( 𝑅1 ‘ 𝐴 ) → ( 𝑅1 ‘ ∪ 𝐶 ) ≼ ( 𝑅1 ‘ 𝐴 ) ) ) | |
| 143 | 136 141 142 | mpsyl | ⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ( 𝑅1 ‘ 𝐶 ) ) ∧ ¬ 𝐶 = ∪ 𝐶 ) → ( 𝑅1 ‘ ∪ 𝐶 ) ≼ ( 𝑅1 ‘ 𝐴 ) ) |
| 144 | endomtr | ⊢ ( ( ran ( 𝐺 ‘ ∪ 𝐶 ) ≈ ( 𝑅1 ‘ ∪ 𝐶 ) ∧ ( 𝑅1 ‘ ∪ 𝐶 ) ≼ ( 𝑅1 ‘ 𝐴 ) ) → ran ( 𝐺 ‘ ∪ 𝐶 ) ≼ ( 𝑅1 ‘ 𝐴 ) ) | |
| 145 | 135 143 144 | syl2anc | ⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ( 𝑅1 ‘ 𝐶 ) ) ∧ ¬ 𝐶 = ∪ 𝐶 ) → ran ( 𝐺 ‘ ∪ 𝐶 ) ≼ ( 𝑅1 ‘ 𝐴 ) ) |
| 146 | endomtr | ⊢ ( ( dom OrdIso ( E , ran ( 𝐺 ‘ ∪ 𝐶 ) ) ≈ ran ( 𝐺 ‘ ∪ 𝐶 ) ∧ ran ( 𝐺 ‘ ∪ 𝐶 ) ≼ ( 𝑅1 ‘ 𝐴 ) ) → dom OrdIso ( E , ran ( 𝐺 ‘ ∪ 𝐶 ) ) ≼ ( 𝑅1 ‘ 𝐴 ) ) | |
| 147 | 131 145 146 | syl2anc | ⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ( 𝑅1 ‘ 𝐶 ) ) ∧ ¬ 𝐶 = ∪ 𝐶 ) → dom OrdIso ( E , ran ( 𝐺 ‘ ∪ 𝐶 ) ) ≼ ( 𝑅1 ‘ 𝐴 ) ) |
| 148 | elharval | ⊢ ( dom OrdIso ( E , ran ( 𝐺 ‘ ∪ 𝐶 ) ) ∈ ( har ‘ ( 𝑅1 ‘ 𝐴 ) ) ↔ ( dom OrdIso ( E , ran ( 𝐺 ‘ ∪ 𝐶 ) ) ∈ On ∧ dom OrdIso ( E , ran ( 𝐺 ‘ ∪ 𝐶 ) ) ≼ ( 𝑅1 ‘ 𝐴 ) ) ) | |
| 149 | 129 147 148 | sylanbrc | ⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ( 𝑅1 ‘ 𝐶 ) ) ∧ ¬ 𝐶 = ∪ 𝐶 ) → dom OrdIso ( E , ran ( 𝐺 ‘ ∪ 𝐶 ) ) ∈ ( har ‘ ( 𝑅1 ‘ 𝐴 ) ) ) |
| 150 | ordelss | ⊢ ( ( Ord ( har ‘ ( 𝑅1 ‘ 𝐴 ) ) ∧ dom OrdIso ( E , ran ( 𝐺 ‘ ∪ 𝐶 ) ) ∈ ( har ‘ ( 𝑅1 ‘ 𝐴 ) ) ) → dom OrdIso ( E , ran ( 𝐺 ‘ ∪ 𝐶 ) ) ⊆ ( har ‘ ( 𝑅1 ‘ 𝐴 ) ) ) | |
| 151 | 127 149 150 | sylancr | ⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ( 𝑅1 ‘ 𝐶 ) ) ∧ ¬ 𝐶 = ∪ 𝐶 ) → dom OrdIso ( E , ran ( 𝐺 ‘ ∪ 𝐶 ) ) ⊆ ( har ‘ ( 𝑅1 ‘ 𝐴 ) ) ) |
| 152 | 125 151 | sstrd | ⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ( 𝑅1 ‘ 𝐶 ) ) ∧ ¬ 𝐶 = ∪ 𝐶 ) → ran 𝐻 ⊆ ( har ‘ ( 𝑅1 ‘ 𝐴 ) ) ) |
| 153 | 81 152 | sstrid | ⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ( 𝑅1 ‘ 𝐶 ) ) ∧ ¬ 𝐶 = ∪ 𝐶 ) → ( 𝐻 “ 𝑦 ) ⊆ ( har ‘ ( 𝑅1 ‘ 𝐴 ) ) ) |
| 154 | fvex | ⊢ ( har ‘ ( 𝑅1 ‘ 𝐴 ) ) ∈ V | |
| 155 | 154 | elpw2 | ⊢ ( ( 𝐻 “ 𝑦 ) ∈ 𝒫 ( har ‘ ( 𝑅1 ‘ 𝐴 ) ) ↔ ( 𝐻 “ 𝑦 ) ⊆ ( har ‘ ( 𝑅1 ‘ 𝐴 ) ) ) |
| 156 | 153 155 | sylibr | ⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ( 𝑅1 ‘ 𝐶 ) ) ∧ ¬ 𝐶 = ∪ 𝐶 ) → ( 𝐻 “ 𝑦 ) ∈ 𝒫 ( har ‘ ( 𝑅1 ‘ 𝐴 ) ) ) |
| 157 | 80 156 | ffvelcdmd | ⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ( 𝑅1 ‘ 𝐶 ) ) ∧ ¬ 𝐶 = ∪ 𝐶 ) → ( 𝐹 ‘ ( 𝐻 “ 𝑦 ) ) ∈ On ) |
| 158 | 77 157 | ifclda | ⊢ ( ( 𝜑 ∧ 𝑦 ∈ ( 𝑅1 ‘ 𝐶 ) ) → if ( 𝐶 = ∪ 𝐶 , ( ( suc ∪ ran ∪ ( 𝐺 “ 𝐶 ) ·o ( rank ‘ 𝑦 ) ) +o ( ( 𝐺 ‘ suc ( rank ‘ 𝑦 ) ) ‘ 𝑦 ) ) , ( 𝐹 ‘ ( 𝐻 “ 𝑦 ) ) ) ∈ On ) |
| 159 | 158 | ex | ⊢ ( 𝜑 → ( 𝑦 ∈ ( 𝑅1 ‘ 𝐶 ) → if ( 𝐶 = ∪ 𝐶 , ( ( suc ∪ ran ∪ ( 𝐺 “ 𝐶 ) ·o ( rank ‘ 𝑦 ) ) +o ( ( 𝐺 ‘ suc ( rank ‘ 𝑦 ) ) ‘ 𝑦 ) ) , ( 𝐹 ‘ ( 𝐻 “ 𝑦 ) ) ) ∈ On ) ) |
| 160 | iftrue | ⊢ ( 𝐶 = ∪ 𝐶 → if ( 𝐶 = ∪ 𝐶 , ( ( suc ∪ ran ∪ ( 𝐺 “ 𝐶 ) ·o ( rank ‘ 𝑦 ) ) +o ( ( 𝐺 ‘ suc ( rank ‘ 𝑦 ) ) ‘ 𝑦 ) ) , ( 𝐹 ‘ ( 𝐻 “ 𝑦 ) ) ) = ( ( suc ∪ ran ∪ ( 𝐺 “ 𝐶 ) ·o ( rank ‘ 𝑦 ) ) +o ( ( 𝐺 ‘ suc ( rank ‘ 𝑦 ) ) ‘ 𝑦 ) ) ) | |
| 161 | iftrue | ⊢ ( 𝐶 = ∪ 𝐶 → if ( 𝐶 = ∪ 𝐶 , ( ( suc ∪ ran ∪ ( 𝐺 “ 𝐶 ) ·o ( rank ‘ 𝑧 ) ) +o ( ( 𝐺 ‘ suc ( rank ‘ 𝑧 ) ) ‘ 𝑧 ) ) , ( 𝐹 ‘ ( 𝐻 “ 𝑧 ) ) ) = ( ( suc ∪ ran ∪ ( 𝐺 “ 𝐶 ) ·o ( rank ‘ 𝑧 ) ) +o ( ( 𝐺 ‘ suc ( rank ‘ 𝑧 ) ) ‘ 𝑧 ) ) ) | |
| 162 | 160 161 | eqeq12d | ⊢ ( 𝐶 = ∪ 𝐶 → ( if ( 𝐶 = ∪ 𝐶 , ( ( suc ∪ ran ∪ ( 𝐺 “ 𝐶 ) ·o ( rank ‘ 𝑦 ) ) +o ( ( 𝐺 ‘ suc ( rank ‘ 𝑦 ) ) ‘ 𝑦 ) ) , ( 𝐹 ‘ ( 𝐻 “ 𝑦 ) ) ) = if ( 𝐶 = ∪ 𝐶 , ( ( suc ∪ ran ∪ ( 𝐺 “ 𝐶 ) ·o ( rank ‘ 𝑧 ) ) +o ( ( 𝐺 ‘ suc ( rank ‘ 𝑧 ) ) ‘ 𝑧 ) ) , ( 𝐹 ‘ ( 𝐻 “ 𝑧 ) ) ) ↔ ( ( suc ∪ ran ∪ ( 𝐺 “ 𝐶 ) ·o ( rank ‘ 𝑦 ) ) +o ( ( 𝐺 ‘ suc ( rank ‘ 𝑦 ) ) ‘ 𝑦 ) ) = ( ( suc ∪ ran ∪ ( 𝐺 “ 𝐶 ) ·o ( rank ‘ 𝑧 ) ) +o ( ( 𝐺 ‘ suc ( rank ‘ 𝑧 ) ) ‘ 𝑧 ) ) ) ) |
| 163 | 162 | adantl | ⊢ ( ( ( 𝜑 ∧ ( 𝑦 ∈ ( 𝑅1 ‘ 𝐶 ) ∧ 𝑧 ∈ ( 𝑅1 ‘ 𝐶 ) ) ) ∧ 𝐶 = ∪ 𝐶 ) → ( if ( 𝐶 = ∪ 𝐶 , ( ( suc ∪ ran ∪ ( 𝐺 “ 𝐶 ) ·o ( rank ‘ 𝑦 ) ) +o ( ( 𝐺 ‘ suc ( rank ‘ 𝑦 ) ) ‘ 𝑦 ) ) , ( 𝐹 ‘ ( 𝐻 “ 𝑦 ) ) ) = if ( 𝐶 = ∪ 𝐶 , ( ( suc ∪ ran ∪ ( 𝐺 “ 𝐶 ) ·o ( rank ‘ 𝑧 ) ) +o ( ( 𝐺 ‘ suc ( rank ‘ 𝑧 ) ) ‘ 𝑧 ) ) , ( 𝐹 ‘ ( 𝐻 “ 𝑧 ) ) ) ↔ ( ( suc ∪ ran ∪ ( 𝐺 “ 𝐶 ) ·o ( rank ‘ 𝑦 ) ) +o ( ( 𝐺 ‘ suc ( rank ‘ 𝑦 ) ) ‘ 𝑦 ) ) = ( ( suc ∪ ran ∪ ( 𝐺 “ 𝐶 ) ·o ( rank ‘ 𝑧 ) ) +o ( ( 𝐺 ‘ suc ( rank ‘ 𝑧 ) ) ‘ 𝑧 ) ) ) ) |
| 164 | 45 | ad2antrr | ⊢ ( ( ( 𝜑 ∧ ( 𝑦 ∈ ( 𝑅1 ‘ 𝐶 ) ∧ 𝑧 ∈ ( 𝑅1 ‘ 𝐶 ) ) ) ∧ 𝐶 = ∪ 𝐶 ) → suc ∪ ran ∪ ( 𝐺 “ 𝐶 ) ∈ On ) |
| 165 | nsuceq0 | ⊢ suc ∪ ran ∪ ( 𝐺 “ 𝐶 ) ≠ ∅ | |
| 166 | 165 | a1i | ⊢ ( ( ( 𝜑 ∧ ( 𝑦 ∈ ( 𝑅1 ‘ 𝐶 ) ∧ 𝑧 ∈ ( 𝑅1 ‘ 𝐶 ) ) ) ∧ 𝐶 = ∪ 𝐶 ) → suc ∪ ran ∪ ( 𝐺 “ 𝐶 ) ≠ ∅ ) |
| 167 | 47 | a1i | ⊢ ( ( ( 𝜑 ∧ ( 𝑦 ∈ ( 𝑅1 ‘ 𝐶 ) ∧ 𝑧 ∈ ( 𝑅1 ‘ 𝐶 ) ) ) ∧ 𝐶 = ∪ 𝐶 ) → ( rank ‘ 𝑦 ) ∈ On ) |
| 168 | onsucuni | ⊢ ( ran ∪ ( 𝐺 “ 𝐶 ) ⊆ On → ran ∪ ( 𝐺 “ 𝐶 ) ⊆ suc ∪ ran ∪ ( 𝐺 “ 𝐶 ) ) | |
| 169 | 41 168 | syl | ⊢ ( 𝜑 → ran ∪ ( 𝐺 “ 𝐶 ) ⊆ suc ∪ ran ∪ ( 𝐺 “ 𝐶 ) ) |
| 170 | 169 | ad2antrr | ⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ( 𝑅1 ‘ 𝐶 ) ) ∧ 𝐶 = ∪ 𝐶 ) → ran ∪ ( 𝐺 “ 𝐶 ) ⊆ suc ∪ ran ∪ ( 𝐺 “ 𝐶 ) ) |
| 171 | 30 | ad2antrr | ⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ( 𝑅1 ‘ 𝐶 ) ) ∧ 𝐶 = ∪ 𝐶 ) → 𝐶 ⊆ On ) |
| 172 | fnfvima | ⊢ ( ( 𝐺 Fn On ∧ 𝐶 ⊆ On ∧ suc ( rank ‘ 𝑦 ) ∈ 𝐶 ) → ( 𝐺 ‘ suc ( rank ‘ 𝑦 ) ) ∈ ( 𝐺 “ 𝐶 ) ) | |
| 173 | 8 171 67 172 | mp3an2i | ⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ( 𝑅1 ‘ 𝐶 ) ) ∧ 𝐶 = ∪ 𝐶 ) → ( 𝐺 ‘ suc ( rank ‘ 𝑦 ) ) ∈ ( 𝐺 “ 𝐶 ) ) |
| 174 | elssuni | ⊢ ( ( 𝐺 ‘ suc ( rank ‘ 𝑦 ) ) ∈ ( 𝐺 “ 𝐶 ) → ( 𝐺 ‘ suc ( rank ‘ 𝑦 ) ) ⊆ ∪ ( 𝐺 “ 𝐶 ) ) | |
| 175 | rnss | ⊢ ( ( 𝐺 ‘ suc ( rank ‘ 𝑦 ) ) ⊆ ∪ ( 𝐺 “ 𝐶 ) → ran ( 𝐺 ‘ suc ( rank ‘ 𝑦 ) ) ⊆ ran ∪ ( 𝐺 “ 𝐶 ) ) | |
| 176 | 173 174 175 | 3syl | ⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ( 𝑅1 ‘ 𝐶 ) ) ∧ 𝐶 = ∪ 𝐶 ) → ran ( 𝐺 ‘ suc ( rank ‘ 𝑦 ) ) ⊆ ran ∪ ( 𝐺 “ 𝐶 ) ) |
| 177 | f1fn | ⊢ ( ( 𝐺 ‘ suc ( rank ‘ 𝑦 ) ) : ( 𝑅1 ‘ suc ( rank ‘ 𝑦 ) ) –1-1→ On → ( 𝐺 ‘ suc ( rank ‘ 𝑦 ) ) Fn ( 𝑅1 ‘ suc ( rank ‘ 𝑦 ) ) ) | |
| 178 | 68 177 | syl | ⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ( 𝑅1 ‘ 𝐶 ) ) ∧ 𝐶 = ∪ 𝐶 ) → ( 𝐺 ‘ suc ( rank ‘ 𝑦 ) ) Fn ( 𝑅1 ‘ suc ( rank ‘ 𝑦 ) ) ) |
| 179 | fnfvelrn | ⊢ ( ( ( 𝐺 ‘ suc ( rank ‘ 𝑦 ) ) Fn ( 𝑅1 ‘ suc ( rank ‘ 𝑦 ) ) ∧ 𝑦 ∈ ( 𝑅1 ‘ suc ( rank ‘ 𝑦 ) ) ) → ( ( 𝐺 ‘ suc ( rank ‘ 𝑦 ) ) ‘ 𝑦 ) ∈ ran ( 𝐺 ‘ suc ( rank ‘ 𝑦 ) ) ) | |
| 180 | 178 74 179 | syl2anc | ⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ( 𝑅1 ‘ 𝐶 ) ) ∧ 𝐶 = ∪ 𝐶 ) → ( ( 𝐺 ‘ suc ( rank ‘ 𝑦 ) ) ‘ 𝑦 ) ∈ ran ( 𝐺 ‘ suc ( rank ‘ 𝑦 ) ) ) |
| 181 | 176 180 | sseldd | ⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ( 𝑅1 ‘ 𝐶 ) ) ∧ 𝐶 = ∪ 𝐶 ) → ( ( 𝐺 ‘ suc ( rank ‘ 𝑦 ) ) ‘ 𝑦 ) ∈ ran ∪ ( 𝐺 “ 𝐶 ) ) |
| 182 | 170 181 | sseldd | ⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ( 𝑅1 ‘ 𝐶 ) ) ∧ 𝐶 = ∪ 𝐶 ) → ( ( 𝐺 ‘ suc ( rank ‘ 𝑦 ) ) ‘ 𝑦 ) ∈ suc ∪ ran ∪ ( 𝐺 “ 𝐶 ) ) |
| 183 | 182 | adantlrr | ⊢ ( ( ( 𝜑 ∧ ( 𝑦 ∈ ( 𝑅1 ‘ 𝐶 ) ∧ 𝑧 ∈ ( 𝑅1 ‘ 𝐶 ) ) ) ∧ 𝐶 = ∪ 𝐶 ) → ( ( 𝐺 ‘ suc ( rank ‘ 𝑦 ) ) ‘ 𝑦 ) ∈ suc ∪ ran ∪ ( 𝐺 “ 𝐶 ) ) |
| 184 | rankon | ⊢ ( rank ‘ 𝑧 ) ∈ On | |
| 185 | 184 | a1i | ⊢ ( ( ( 𝜑 ∧ ( 𝑦 ∈ ( 𝑅1 ‘ 𝐶 ) ∧ 𝑧 ∈ ( 𝑅1 ‘ 𝐶 ) ) ) ∧ 𝐶 = ∪ 𝐶 ) → ( rank ‘ 𝑧 ) ∈ On ) |
| 186 | eleq1w | ⊢ ( 𝑦 = 𝑧 → ( 𝑦 ∈ ( 𝑅1 ‘ 𝐶 ) ↔ 𝑧 ∈ ( 𝑅1 ‘ 𝐶 ) ) ) | |
| 187 | 186 | anbi2d | ⊢ ( 𝑦 = 𝑧 → ( ( 𝜑 ∧ 𝑦 ∈ ( 𝑅1 ‘ 𝐶 ) ) ↔ ( 𝜑 ∧ 𝑧 ∈ ( 𝑅1 ‘ 𝐶 ) ) ) ) |
| 188 | 187 | anbi1d | ⊢ ( 𝑦 = 𝑧 → ( ( ( 𝜑 ∧ 𝑦 ∈ ( 𝑅1 ‘ 𝐶 ) ) ∧ 𝐶 = ∪ 𝐶 ) ↔ ( ( 𝜑 ∧ 𝑧 ∈ ( 𝑅1 ‘ 𝐶 ) ) ∧ 𝐶 = ∪ 𝐶 ) ) ) |
| 189 | fveq2 | ⊢ ( 𝑦 = 𝑧 → ( rank ‘ 𝑦 ) = ( rank ‘ 𝑧 ) ) | |
| 190 | suceq | ⊢ ( ( rank ‘ 𝑦 ) = ( rank ‘ 𝑧 ) → suc ( rank ‘ 𝑦 ) = suc ( rank ‘ 𝑧 ) ) | |
| 191 | 189 190 | syl | ⊢ ( 𝑦 = 𝑧 → suc ( rank ‘ 𝑦 ) = suc ( rank ‘ 𝑧 ) ) |
| 192 | 191 | fveq2d | ⊢ ( 𝑦 = 𝑧 → ( 𝐺 ‘ suc ( rank ‘ 𝑦 ) ) = ( 𝐺 ‘ suc ( rank ‘ 𝑧 ) ) ) |
| 193 | id | ⊢ ( 𝑦 = 𝑧 → 𝑦 = 𝑧 ) | |
| 194 | 192 193 | fveq12d | ⊢ ( 𝑦 = 𝑧 → ( ( 𝐺 ‘ suc ( rank ‘ 𝑦 ) ) ‘ 𝑦 ) = ( ( 𝐺 ‘ suc ( rank ‘ 𝑧 ) ) ‘ 𝑧 ) ) |
| 195 | 194 | eleq1d | ⊢ ( 𝑦 = 𝑧 → ( ( ( 𝐺 ‘ suc ( rank ‘ 𝑦 ) ) ‘ 𝑦 ) ∈ suc ∪ ran ∪ ( 𝐺 “ 𝐶 ) ↔ ( ( 𝐺 ‘ suc ( rank ‘ 𝑧 ) ) ‘ 𝑧 ) ∈ suc ∪ ran ∪ ( 𝐺 “ 𝐶 ) ) ) |
| 196 | 188 195 | imbi12d | ⊢ ( 𝑦 = 𝑧 → ( ( ( ( 𝜑 ∧ 𝑦 ∈ ( 𝑅1 ‘ 𝐶 ) ) ∧ 𝐶 = ∪ 𝐶 ) → ( ( 𝐺 ‘ suc ( rank ‘ 𝑦 ) ) ‘ 𝑦 ) ∈ suc ∪ ran ∪ ( 𝐺 “ 𝐶 ) ) ↔ ( ( ( 𝜑 ∧ 𝑧 ∈ ( 𝑅1 ‘ 𝐶 ) ) ∧ 𝐶 = ∪ 𝐶 ) → ( ( 𝐺 ‘ suc ( rank ‘ 𝑧 ) ) ‘ 𝑧 ) ∈ suc ∪ ran ∪ ( 𝐺 “ 𝐶 ) ) ) ) |
| 197 | 196 182 | chvarvv | ⊢ ( ( ( 𝜑 ∧ 𝑧 ∈ ( 𝑅1 ‘ 𝐶 ) ) ∧ 𝐶 = ∪ 𝐶 ) → ( ( 𝐺 ‘ suc ( rank ‘ 𝑧 ) ) ‘ 𝑧 ) ∈ suc ∪ ran ∪ ( 𝐺 “ 𝐶 ) ) |
| 198 | 197 | adantlrl | ⊢ ( ( ( 𝜑 ∧ ( 𝑦 ∈ ( 𝑅1 ‘ 𝐶 ) ∧ 𝑧 ∈ ( 𝑅1 ‘ 𝐶 ) ) ) ∧ 𝐶 = ∪ 𝐶 ) → ( ( 𝐺 ‘ suc ( rank ‘ 𝑧 ) ) ‘ 𝑧 ) ∈ suc ∪ ran ∪ ( 𝐺 “ 𝐶 ) ) |
| 199 | omopth2 | ⊢ ( ( ( suc ∪ ran ∪ ( 𝐺 “ 𝐶 ) ∈ On ∧ suc ∪ ran ∪ ( 𝐺 “ 𝐶 ) ≠ ∅ ) ∧ ( ( rank ‘ 𝑦 ) ∈ On ∧ ( ( 𝐺 ‘ suc ( rank ‘ 𝑦 ) ) ‘ 𝑦 ) ∈ suc ∪ ran ∪ ( 𝐺 “ 𝐶 ) ) ∧ ( ( rank ‘ 𝑧 ) ∈ On ∧ ( ( 𝐺 ‘ suc ( rank ‘ 𝑧 ) ) ‘ 𝑧 ) ∈ suc ∪ ran ∪ ( 𝐺 “ 𝐶 ) ) ) → ( ( ( suc ∪ ran ∪ ( 𝐺 “ 𝐶 ) ·o ( rank ‘ 𝑦 ) ) +o ( ( 𝐺 ‘ suc ( rank ‘ 𝑦 ) ) ‘ 𝑦 ) ) = ( ( suc ∪ ran ∪ ( 𝐺 “ 𝐶 ) ·o ( rank ‘ 𝑧 ) ) +o ( ( 𝐺 ‘ suc ( rank ‘ 𝑧 ) ) ‘ 𝑧 ) ) ↔ ( ( rank ‘ 𝑦 ) = ( rank ‘ 𝑧 ) ∧ ( ( 𝐺 ‘ suc ( rank ‘ 𝑦 ) ) ‘ 𝑦 ) = ( ( 𝐺 ‘ suc ( rank ‘ 𝑧 ) ) ‘ 𝑧 ) ) ) ) | |
| 200 | 164 166 167 183 185 198 199 | syl222anc | ⊢ ( ( ( 𝜑 ∧ ( 𝑦 ∈ ( 𝑅1 ‘ 𝐶 ) ∧ 𝑧 ∈ ( 𝑅1 ‘ 𝐶 ) ) ) ∧ 𝐶 = ∪ 𝐶 ) → ( ( ( suc ∪ ran ∪ ( 𝐺 “ 𝐶 ) ·o ( rank ‘ 𝑦 ) ) +o ( ( 𝐺 ‘ suc ( rank ‘ 𝑦 ) ) ‘ 𝑦 ) ) = ( ( suc ∪ ran ∪ ( 𝐺 “ 𝐶 ) ·o ( rank ‘ 𝑧 ) ) +o ( ( 𝐺 ‘ suc ( rank ‘ 𝑧 ) ) ‘ 𝑧 ) ) ↔ ( ( rank ‘ 𝑦 ) = ( rank ‘ 𝑧 ) ∧ ( ( 𝐺 ‘ suc ( rank ‘ 𝑦 ) ) ‘ 𝑦 ) = ( ( 𝐺 ‘ suc ( rank ‘ 𝑧 ) ) ‘ 𝑧 ) ) ) ) |
| 201 | 190 | adantl | ⊢ ( ( ( ( 𝜑 ∧ ( 𝑦 ∈ ( 𝑅1 ‘ 𝐶 ) ∧ 𝑧 ∈ ( 𝑅1 ‘ 𝐶 ) ) ) ∧ 𝐶 = ∪ 𝐶 ) ∧ ( rank ‘ 𝑦 ) = ( rank ‘ 𝑧 ) ) → suc ( rank ‘ 𝑦 ) = suc ( rank ‘ 𝑧 ) ) |
| 202 | 201 | fveq2d | ⊢ ( ( ( ( 𝜑 ∧ ( 𝑦 ∈ ( 𝑅1 ‘ 𝐶 ) ∧ 𝑧 ∈ ( 𝑅1 ‘ 𝐶 ) ) ) ∧ 𝐶 = ∪ 𝐶 ) ∧ ( rank ‘ 𝑦 ) = ( rank ‘ 𝑧 ) ) → ( 𝐺 ‘ suc ( rank ‘ 𝑦 ) ) = ( 𝐺 ‘ suc ( rank ‘ 𝑧 ) ) ) |
| 203 | 202 | fveq1d | ⊢ ( ( ( ( 𝜑 ∧ ( 𝑦 ∈ ( 𝑅1 ‘ 𝐶 ) ∧ 𝑧 ∈ ( 𝑅1 ‘ 𝐶 ) ) ) ∧ 𝐶 = ∪ 𝐶 ) ∧ ( rank ‘ 𝑦 ) = ( rank ‘ 𝑧 ) ) → ( ( 𝐺 ‘ suc ( rank ‘ 𝑦 ) ) ‘ 𝑧 ) = ( ( 𝐺 ‘ suc ( rank ‘ 𝑧 ) ) ‘ 𝑧 ) ) |
| 204 | 203 | eqeq2d | ⊢ ( ( ( ( 𝜑 ∧ ( 𝑦 ∈ ( 𝑅1 ‘ 𝐶 ) ∧ 𝑧 ∈ ( 𝑅1 ‘ 𝐶 ) ) ) ∧ 𝐶 = ∪ 𝐶 ) ∧ ( rank ‘ 𝑦 ) = ( rank ‘ 𝑧 ) ) → ( ( ( 𝐺 ‘ suc ( rank ‘ 𝑦 ) ) ‘ 𝑦 ) = ( ( 𝐺 ‘ suc ( rank ‘ 𝑦 ) ) ‘ 𝑧 ) ↔ ( ( 𝐺 ‘ suc ( rank ‘ 𝑦 ) ) ‘ 𝑦 ) = ( ( 𝐺 ‘ suc ( rank ‘ 𝑧 ) ) ‘ 𝑧 ) ) ) |
| 205 | 68 | adantlrr | ⊢ ( ( ( 𝜑 ∧ ( 𝑦 ∈ ( 𝑅1 ‘ 𝐶 ) ∧ 𝑧 ∈ ( 𝑅1 ‘ 𝐶 ) ) ) ∧ 𝐶 = ∪ 𝐶 ) → ( 𝐺 ‘ suc ( rank ‘ 𝑦 ) ) : ( 𝑅1 ‘ suc ( rank ‘ 𝑦 ) ) –1-1→ On ) |
| 206 | 205 | adantr | ⊢ ( ( ( ( 𝜑 ∧ ( 𝑦 ∈ ( 𝑅1 ‘ 𝐶 ) ∧ 𝑧 ∈ ( 𝑅1 ‘ 𝐶 ) ) ) ∧ 𝐶 = ∪ 𝐶 ) ∧ ( rank ‘ 𝑦 ) = ( rank ‘ 𝑧 ) ) → ( 𝐺 ‘ suc ( rank ‘ 𝑦 ) ) : ( 𝑅1 ‘ suc ( rank ‘ 𝑦 ) ) –1-1→ On ) |
| 207 | 74 | adantlrr | ⊢ ( ( ( 𝜑 ∧ ( 𝑦 ∈ ( 𝑅1 ‘ 𝐶 ) ∧ 𝑧 ∈ ( 𝑅1 ‘ 𝐶 ) ) ) ∧ 𝐶 = ∪ 𝐶 ) → 𝑦 ∈ ( 𝑅1 ‘ suc ( rank ‘ 𝑦 ) ) ) |
| 208 | 207 | adantr | ⊢ ( ( ( ( 𝜑 ∧ ( 𝑦 ∈ ( 𝑅1 ‘ 𝐶 ) ∧ 𝑧 ∈ ( 𝑅1 ‘ 𝐶 ) ) ) ∧ 𝐶 = ∪ 𝐶 ) ∧ ( rank ‘ 𝑦 ) = ( rank ‘ 𝑧 ) ) → 𝑦 ∈ ( 𝑅1 ‘ suc ( rank ‘ 𝑦 ) ) ) |
| 209 | r1elwf | ⊢ ( 𝑧 ∈ ( 𝑅1 ‘ 𝐶 ) → 𝑧 ∈ ∪ ( 𝑅1 “ On ) ) | |
| 210 | rankidb | ⊢ ( 𝑧 ∈ ∪ ( 𝑅1 “ On ) → 𝑧 ∈ ( 𝑅1 ‘ suc ( rank ‘ 𝑧 ) ) ) | |
| 211 | 209 210 | syl | ⊢ ( 𝑧 ∈ ( 𝑅1 ‘ 𝐶 ) → 𝑧 ∈ ( 𝑅1 ‘ suc ( rank ‘ 𝑧 ) ) ) |
| 212 | 211 | ad2antll | ⊢ ( ( 𝜑 ∧ ( 𝑦 ∈ ( 𝑅1 ‘ 𝐶 ) ∧ 𝑧 ∈ ( 𝑅1 ‘ 𝐶 ) ) ) → 𝑧 ∈ ( 𝑅1 ‘ suc ( rank ‘ 𝑧 ) ) ) |
| 213 | 212 | ad2antrr | ⊢ ( ( ( ( 𝜑 ∧ ( 𝑦 ∈ ( 𝑅1 ‘ 𝐶 ) ∧ 𝑧 ∈ ( 𝑅1 ‘ 𝐶 ) ) ) ∧ 𝐶 = ∪ 𝐶 ) ∧ ( rank ‘ 𝑦 ) = ( rank ‘ 𝑧 ) ) → 𝑧 ∈ ( 𝑅1 ‘ suc ( rank ‘ 𝑧 ) ) ) |
| 214 | 201 | fveq2d | ⊢ ( ( ( ( 𝜑 ∧ ( 𝑦 ∈ ( 𝑅1 ‘ 𝐶 ) ∧ 𝑧 ∈ ( 𝑅1 ‘ 𝐶 ) ) ) ∧ 𝐶 = ∪ 𝐶 ) ∧ ( rank ‘ 𝑦 ) = ( rank ‘ 𝑧 ) ) → ( 𝑅1 ‘ suc ( rank ‘ 𝑦 ) ) = ( 𝑅1 ‘ suc ( rank ‘ 𝑧 ) ) ) |
| 215 | 213 214 | eleqtrrd | ⊢ ( ( ( ( 𝜑 ∧ ( 𝑦 ∈ ( 𝑅1 ‘ 𝐶 ) ∧ 𝑧 ∈ ( 𝑅1 ‘ 𝐶 ) ) ) ∧ 𝐶 = ∪ 𝐶 ) ∧ ( rank ‘ 𝑦 ) = ( rank ‘ 𝑧 ) ) → 𝑧 ∈ ( 𝑅1 ‘ suc ( rank ‘ 𝑦 ) ) ) |
| 216 | f1fveq | ⊢ ( ( ( 𝐺 ‘ suc ( rank ‘ 𝑦 ) ) : ( 𝑅1 ‘ suc ( rank ‘ 𝑦 ) ) –1-1→ On ∧ ( 𝑦 ∈ ( 𝑅1 ‘ suc ( rank ‘ 𝑦 ) ) ∧ 𝑧 ∈ ( 𝑅1 ‘ suc ( rank ‘ 𝑦 ) ) ) ) → ( ( ( 𝐺 ‘ suc ( rank ‘ 𝑦 ) ) ‘ 𝑦 ) = ( ( 𝐺 ‘ suc ( rank ‘ 𝑦 ) ) ‘ 𝑧 ) ↔ 𝑦 = 𝑧 ) ) | |
| 217 | 206 208 215 216 | syl12anc | ⊢ ( ( ( ( 𝜑 ∧ ( 𝑦 ∈ ( 𝑅1 ‘ 𝐶 ) ∧ 𝑧 ∈ ( 𝑅1 ‘ 𝐶 ) ) ) ∧ 𝐶 = ∪ 𝐶 ) ∧ ( rank ‘ 𝑦 ) = ( rank ‘ 𝑧 ) ) → ( ( ( 𝐺 ‘ suc ( rank ‘ 𝑦 ) ) ‘ 𝑦 ) = ( ( 𝐺 ‘ suc ( rank ‘ 𝑦 ) ) ‘ 𝑧 ) ↔ 𝑦 = 𝑧 ) ) |
| 218 | 204 217 | bitr3d | ⊢ ( ( ( ( 𝜑 ∧ ( 𝑦 ∈ ( 𝑅1 ‘ 𝐶 ) ∧ 𝑧 ∈ ( 𝑅1 ‘ 𝐶 ) ) ) ∧ 𝐶 = ∪ 𝐶 ) ∧ ( rank ‘ 𝑦 ) = ( rank ‘ 𝑧 ) ) → ( ( ( 𝐺 ‘ suc ( rank ‘ 𝑦 ) ) ‘ 𝑦 ) = ( ( 𝐺 ‘ suc ( rank ‘ 𝑧 ) ) ‘ 𝑧 ) ↔ 𝑦 = 𝑧 ) ) |
| 219 | 218 | biimpd | ⊢ ( ( ( ( 𝜑 ∧ ( 𝑦 ∈ ( 𝑅1 ‘ 𝐶 ) ∧ 𝑧 ∈ ( 𝑅1 ‘ 𝐶 ) ) ) ∧ 𝐶 = ∪ 𝐶 ) ∧ ( rank ‘ 𝑦 ) = ( rank ‘ 𝑧 ) ) → ( ( ( 𝐺 ‘ suc ( rank ‘ 𝑦 ) ) ‘ 𝑦 ) = ( ( 𝐺 ‘ suc ( rank ‘ 𝑧 ) ) ‘ 𝑧 ) → 𝑦 = 𝑧 ) ) |
| 220 | 219 | expimpd | ⊢ ( ( ( 𝜑 ∧ ( 𝑦 ∈ ( 𝑅1 ‘ 𝐶 ) ∧ 𝑧 ∈ ( 𝑅1 ‘ 𝐶 ) ) ) ∧ 𝐶 = ∪ 𝐶 ) → ( ( ( rank ‘ 𝑦 ) = ( rank ‘ 𝑧 ) ∧ ( ( 𝐺 ‘ suc ( rank ‘ 𝑦 ) ) ‘ 𝑦 ) = ( ( 𝐺 ‘ suc ( rank ‘ 𝑧 ) ) ‘ 𝑧 ) ) → 𝑦 = 𝑧 ) ) |
| 221 | 189 194 | jca | ⊢ ( 𝑦 = 𝑧 → ( ( rank ‘ 𝑦 ) = ( rank ‘ 𝑧 ) ∧ ( ( 𝐺 ‘ suc ( rank ‘ 𝑦 ) ) ‘ 𝑦 ) = ( ( 𝐺 ‘ suc ( rank ‘ 𝑧 ) ) ‘ 𝑧 ) ) ) |
| 222 | 220 221 | impbid1 | ⊢ ( ( ( 𝜑 ∧ ( 𝑦 ∈ ( 𝑅1 ‘ 𝐶 ) ∧ 𝑧 ∈ ( 𝑅1 ‘ 𝐶 ) ) ) ∧ 𝐶 = ∪ 𝐶 ) → ( ( ( rank ‘ 𝑦 ) = ( rank ‘ 𝑧 ) ∧ ( ( 𝐺 ‘ suc ( rank ‘ 𝑦 ) ) ‘ 𝑦 ) = ( ( 𝐺 ‘ suc ( rank ‘ 𝑧 ) ) ‘ 𝑧 ) ) ↔ 𝑦 = 𝑧 ) ) |
| 223 | 163 200 222 | 3bitrd | ⊢ ( ( ( 𝜑 ∧ ( 𝑦 ∈ ( 𝑅1 ‘ 𝐶 ) ∧ 𝑧 ∈ ( 𝑅1 ‘ 𝐶 ) ) ) ∧ 𝐶 = ∪ 𝐶 ) → ( if ( 𝐶 = ∪ 𝐶 , ( ( suc ∪ ran ∪ ( 𝐺 “ 𝐶 ) ·o ( rank ‘ 𝑦 ) ) +o ( ( 𝐺 ‘ suc ( rank ‘ 𝑦 ) ) ‘ 𝑦 ) ) , ( 𝐹 ‘ ( 𝐻 “ 𝑦 ) ) ) = if ( 𝐶 = ∪ 𝐶 , ( ( suc ∪ ran ∪ ( 𝐺 “ 𝐶 ) ·o ( rank ‘ 𝑧 ) ) +o ( ( 𝐺 ‘ suc ( rank ‘ 𝑧 ) ) ‘ 𝑧 ) ) , ( 𝐹 ‘ ( 𝐻 “ 𝑧 ) ) ) ↔ 𝑦 = 𝑧 ) ) |
| 224 | iffalse | ⊢ ( ¬ 𝐶 = ∪ 𝐶 → if ( 𝐶 = ∪ 𝐶 , ( ( suc ∪ ran ∪ ( 𝐺 “ 𝐶 ) ·o ( rank ‘ 𝑦 ) ) +o ( ( 𝐺 ‘ suc ( rank ‘ 𝑦 ) ) ‘ 𝑦 ) ) , ( 𝐹 ‘ ( 𝐻 “ 𝑦 ) ) ) = ( 𝐹 ‘ ( 𝐻 “ 𝑦 ) ) ) | |
| 225 | iffalse | ⊢ ( ¬ 𝐶 = ∪ 𝐶 → if ( 𝐶 = ∪ 𝐶 , ( ( suc ∪ ran ∪ ( 𝐺 “ 𝐶 ) ·o ( rank ‘ 𝑧 ) ) +o ( ( 𝐺 ‘ suc ( rank ‘ 𝑧 ) ) ‘ 𝑧 ) ) , ( 𝐹 ‘ ( 𝐻 “ 𝑧 ) ) ) = ( 𝐹 ‘ ( 𝐻 “ 𝑧 ) ) ) | |
| 226 | 224 225 | eqeq12d | ⊢ ( ¬ 𝐶 = ∪ 𝐶 → ( if ( 𝐶 = ∪ 𝐶 , ( ( suc ∪ ran ∪ ( 𝐺 “ 𝐶 ) ·o ( rank ‘ 𝑦 ) ) +o ( ( 𝐺 ‘ suc ( rank ‘ 𝑦 ) ) ‘ 𝑦 ) ) , ( 𝐹 ‘ ( 𝐻 “ 𝑦 ) ) ) = if ( 𝐶 = ∪ 𝐶 , ( ( suc ∪ ran ∪ ( 𝐺 “ 𝐶 ) ·o ( rank ‘ 𝑧 ) ) +o ( ( 𝐺 ‘ suc ( rank ‘ 𝑧 ) ) ‘ 𝑧 ) ) , ( 𝐹 ‘ ( 𝐻 “ 𝑧 ) ) ) ↔ ( 𝐹 ‘ ( 𝐻 “ 𝑦 ) ) = ( 𝐹 ‘ ( 𝐻 “ 𝑧 ) ) ) ) |
| 227 | 226 | adantl | ⊢ ( ( ( 𝜑 ∧ ( 𝑦 ∈ ( 𝑅1 ‘ 𝐶 ) ∧ 𝑧 ∈ ( 𝑅1 ‘ 𝐶 ) ) ) ∧ ¬ 𝐶 = ∪ 𝐶 ) → ( if ( 𝐶 = ∪ 𝐶 , ( ( suc ∪ ran ∪ ( 𝐺 “ 𝐶 ) ·o ( rank ‘ 𝑦 ) ) +o ( ( 𝐺 ‘ suc ( rank ‘ 𝑦 ) ) ‘ 𝑦 ) ) , ( 𝐹 ‘ ( 𝐻 “ 𝑦 ) ) ) = if ( 𝐶 = ∪ 𝐶 , ( ( suc ∪ ran ∪ ( 𝐺 “ 𝐶 ) ·o ( rank ‘ 𝑧 ) ) +o ( ( 𝐺 ‘ suc ( rank ‘ 𝑧 ) ) ‘ 𝑧 ) ) , ( 𝐹 ‘ ( 𝐻 “ 𝑧 ) ) ) ↔ ( 𝐹 ‘ ( 𝐻 “ 𝑦 ) ) = ( 𝐹 ‘ ( 𝐻 “ 𝑧 ) ) ) ) |
| 228 | 2 | ad2antrr | ⊢ ( ( ( 𝜑 ∧ ( 𝑦 ∈ ( 𝑅1 ‘ 𝐶 ) ∧ 𝑧 ∈ ( 𝑅1 ‘ 𝐶 ) ) ) ∧ ¬ 𝐶 = ∪ 𝐶 ) → 𝐹 : 𝒫 ( har ‘ ( 𝑅1 ‘ 𝐴 ) ) –1-1→ On ) |
| 229 | 156 | adantlrr | ⊢ ( ( ( 𝜑 ∧ ( 𝑦 ∈ ( 𝑅1 ‘ 𝐶 ) ∧ 𝑧 ∈ ( 𝑅1 ‘ 𝐶 ) ) ) ∧ ¬ 𝐶 = ∪ 𝐶 ) → ( 𝐻 “ 𝑦 ) ∈ 𝒫 ( har ‘ ( 𝑅1 ‘ 𝐴 ) ) ) |
| 230 | 187 | anbi1d | ⊢ ( 𝑦 = 𝑧 → ( ( ( 𝜑 ∧ 𝑦 ∈ ( 𝑅1 ‘ 𝐶 ) ) ∧ ¬ 𝐶 = ∪ 𝐶 ) ↔ ( ( 𝜑 ∧ 𝑧 ∈ ( 𝑅1 ‘ 𝐶 ) ) ∧ ¬ 𝐶 = ∪ 𝐶 ) ) ) |
| 231 | imaeq2 | ⊢ ( 𝑦 = 𝑧 → ( 𝐻 “ 𝑦 ) = ( 𝐻 “ 𝑧 ) ) | |
| 232 | 231 | eleq1d | ⊢ ( 𝑦 = 𝑧 → ( ( 𝐻 “ 𝑦 ) ∈ 𝒫 ( har ‘ ( 𝑅1 ‘ 𝐴 ) ) ↔ ( 𝐻 “ 𝑧 ) ∈ 𝒫 ( har ‘ ( 𝑅1 ‘ 𝐴 ) ) ) ) |
| 233 | 230 232 | imbi12d | ⊢ ( 𝑦 = 𝑧 → ( ( ( ( 𝜑 ∧ 𝑦 ∈ ( 𝑅1 ‘ 𝐶 ) ) ∧ ¬ 𝐶 = ∪ 𝐶 ) → ( 𝐻 “ 𝑦 ) ∈ 𝒫 ( har ‘ ( 𝑅1 ‘ 𝐴 ) ) ) ↔ ( ( ( 𝜑 ∧ 𝑧 ∈ ( 𝑅1 ‘ 𝐶 ) ) ∧ ¬ 𝐶 = ∪ 𝐶 ) → ( 𝐻 “ 𝑧 ) ∈ 𝒫 ( har ‘ ( 𝑅1 ‘ 𝐴 ) ) ) ) ) |
| 234 | 233 156 | chvarvv | ⊢ ( ( ( 𝜑 ∧ 𝑧 ∈ ( 𝑅1 ‘ 𝐶 ) ) ∧ ¬ 𝐶 = ∪ 𝐶 ) → ( 𝐻 “ 𝑧 ) ∈ 𝒫 ( har ‘ ( 𝑅1 ‘ 𝐴 ) ) ) |
| 235 | 234 | adantlrl | ⊢ ( ( ( 𝜑 ∧ ( 𝑦 ∈ ( 𝑅1 ‘ 𝐶 ) ∧ 𝑧 ∈ ( 𝑅1 ‘ 𝐶 ) ) ) ∧ ¬ 𝐶 = ∪ 𝐶 ) → ( 𝐻 “ 𝑧 ) ∈ 𝒫 ( har ‘ ( 𝑅1 ‘ 𝐴 ) ) ) |
| 236 | f1fveq | ⊢ ( ( 𝐹 : 𝒫 ( har ‘ ( 𝑅1 ‘ 𝐴 ) ) –1-1→ On ∧ ( ( 𝐻 “ 𝑦 ) ∈ 𝒫 ( har ‘ ( 𝑅1 ‘ 𝐴 ) ) ∧ ( 𝐻 “ 𝑧 ) ∈ 𝒫 ( har ‘ ( 𝑅1 ‘ 𝐴 ) ) ) ) → ( ( 𝐹 ‘ ( 𝐻 “ 𝑦 ) ) = ( 𝐹 ‘ ( 𝐻 “ 𝑧 ) ) ↔ ( 𝐻 “ 𝑦 ) = ( 𝐻 “ 𝑧 ) ) ) | |
| 237 | 228 229 235 236 | syl12anc | ⊢ ( ( ( 𝜑 ∧ ( 𝑦 ∈ ( 𝑅1 ‘ 𝐶 ) ∧ 𝑧 ∈ ( 𝑅1 ‘ 𝐶 ) ) ) ∧ ¬ 𝐶 = ∪ 𝐶 ) → ( ( 𝐹 ‘ ( 𝐻 “ 𝑦 ) ) = ( 𝐹 ‘ ( 𝐻 “ 𝑧 ) ) ↔ ( 𝐻 “ 𝑦 ) = ( 𝐻 “ 𝑧 ) ) ) |
| 238 | 122 | adantlrr | ⊢ ( ( ( 𝜑 ∧ ( 𝑦 ∈ ( 𝑅1 ‘ 𝐶 ) ∧ 𝑧 ∈ ( 𝑅1 ‘ 𝐶 ) ) ) ∧ ¬ 𝐶 = ∪ 𝐶 ) → 𝐻 : ( 𝑅1 ‘ ∪ 𝐶 ) –1-1→ dom OrdIso ( E , ran ( 𝐺 ‘ ∪ 𝐶 ) ) ) |
| 239 | simplrl | ⊢ ( ( ( 𝜑 ∧ ( 𝑦 ∈ ( 𝑅1 ‘ 𝐶 ) ∧ 𝑧 ∈ ( 𝑅1 ‘ 𝐶 ) ) ) ∧ ¬ 𝐶 = ∪ 𝐶 ) → 𝑦 ∈ ( 𝑅1 ‘ 𝐶 ) ) | |
| 240 | 99 | fveq2d | ⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ( 𝑅1 ‘ 𝐶 ) ) ∧ ¬ 𝐶 = ∪ 𝐶 ) → ( 𝑅1 ‘ 𝐶 ) = ( 𝑅1 ‘ suc ∪ 𝐶 ) ) |
| 241 | r1suc | ⊢ ( ∪ 𝐶 ∈ On → ( 𝑅1 ‘ suc ∪ 𝐶 ) = 𝒫 ( 𝑅1 ‘ ∪ 𝐶 ) ) | |
| 242 | 92 93 241 | 3syl | ⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ( 𝑅1 ‘ 𝐶 ) ) ∧ ¬ 𝐶 = ∪ 𝐶 ) → ( 𝑅1 ‘ suc ∪ 𝐶 ) = 𝒫 ( 𝑅1 ‘ ∪ 𝐶 ) ) |
| 243 | 240 242 | eqtrd | ⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ( 𝑅1 ‘ 𝐶 ) ) ∧ ¬ 𝐶 = ∪ 𝐶 ) → ( 𝑅1 ‘ 𝐶 ) = 𝒫 ( 𝑅1 ‘ ∪ 𝐶 ) ) |
| 244 | 243 | adantlrr | ⊢ ( ( ( 𝜑 ∧ ( 𝑦 ∈ ( 𝑅1 ‘ 𝐶 ) ∧ 𝑧 ∈ ( 𝑅1 ‘ 𝐶 ) ) ) ∧ ¬ 𝐶 = ∪ 𝐶 ) → ( 𝑅1 ‘ 𝐶 ) = 𝒫 ( 𝑅1 ‘ ∪ 𝐶 ) ) |
| 245 | 239 244 | eleqtrd | ⊢ ( ( ( 𝜑 ∧ ( 𝑦 ∈ ( 𝑅1 ‘ 𝐶 ) ∧ 𝑧 ∈ ( 𝑅1 ‘ 𝐶 ) ) ) ∧ ¬ 𝐶 = ∪ 𝐶 ) → 𝑦 ∈ 𝒫 ( 𝑅1 ‘ ∪ 𝐶 ) ) |
| 246 | 245 | elpwid | ⊢ ( ( ( 𝜑 ∧ ( 𝑦 ∈ ( 𝑅1 ‘ 𝐶 ) ∧ 𝑧 ∈ ( 𝑅1 ‘ 𝐶 ) ) ) ∧ ¬ 𝐶 = ∪ 𝐶 ) → 𝑦 ⊆ ( 𝑅1 ‘ ∪ 𝐶 ) ) |
| 247 | simplrr | ⊢ ( ( ( 𝜑 ∧ ( 𝑦 ∈ ( 𝑅1 ‘ 𝐶 ) ∧ 𝑧 ∈ ( 𝑅1 ‘ 𝐶 ) ) ) ∧ ¬ 𝐶 = ∪ 𝐶 ) → 𝑧 ∈ ( 𝑅1 ‘ 𝐶 ) ) | |
| 248 | 247 244 | eleqtrd | ⊢ ( ( ( 𝜑 ∧ ( 𝑦 ∈ ( 𝑅1 ‘ 𝐶 ) ∧ 𝑧 ∈ ( 𝑅1 ‘ 𝐶 ) ) ) ∧ ¬ 𝐶 = ∪ 𝐶 ) → 𝑧 ∈ 𝒫 ( 𝑅1 ‘ ∪ 𝐶 ) ) |
| 249 | 248 | elpwid | ⊢ ( ( ( 𝜑 ∧ ( 𝑦 ∈ ( 𝑅1 ‘ 𝐶 ) ∧ 𝑧 ∈ ( 𝑅1 ‘ 𝐶 ) ) ) ∧ ¬ 𝐶 = ∪ 𝐶 ) → 𝑧 ⊆ ( 𝑅1 ‘ ∪ 𝐶 ) ) |
| 250 | f1imaeq | ⊢ ( ( 𝐻 : ( 𝑅1 ‘ ∪ 𝐶 ) –1-1→ dom OrdIso ( E , ran ( 𝐺 ‘ ∪ 𝐶 ) ) ∧ ( 𝑦 ⊆ ( 𝑅1 ‘ ∪ 𝐶 ) ∧ 𝑧 ⊆ ( 𝑅1 ‘ ∪ 𝐶 ) ) ) → ( ( 𝐻 “ 𝑦 ) = ( 𝐻 “ 𝑧 ) ↔ 𝑦 = 𝑧 ) ) | |
| 251 | 238 246 249 250 | syl12anc | ⊢ ( ( ( 𝜑 ∧ ( 𝑦 ∈ ( 𝑅1 ‘ 𝐶 ) ∧ 𝑧 ∈ ( 𝑅1 ‘ 𝐶 ) ) ) ∧ ¬ 𝐶 = ∪ 𝐶 ) → ( ( 𝐻 “ 𝑦 ) = ( 𝐻 “ 𝑧 ) ↔ 𝑦 = 𝑧 ) ) |
| 252 | 227 237 251 | 3bitrd | ⊢ ( ( ( 𝜑 ∧ ( 𝑦 ∈ ( 𝑅1 ‘ 𝐶 ) ∧ 𝑧 ∈ ( 𝑅1 ‘ 𝐶 ) ) ) ∧ ¬ 𝐶 = ∪ 𝐶 ) → ( if ( 𝐶 = ∪ 𝐶 , ( ( suc ∪ ran ∪ ( 𝐺 “ 𝐶 ) ·o ( rank ‘ 𝑦 ) ) +o ( ( 𝐺 ‘ suc ( rank ‘ 𝑦 ) ) ‘ 𝑦 ) ) , ( 𝐹 ‘ ( 𝐻 “ 𝑦 ) ) ) = if ( 𝐶 = ∪ 𝐶 , ( ( suc ∪ ran ∪ ( 𝐺 “ 𝐶 ) ·o ( rank ‘ 𝑧 ) ) +o ( ( 𝐺 ‘ suc ( rank ‘ 𝑧 ) ) ‘ 𝑧 ) ) , ( 𝐹 ‘ ( 𝐻 “ 𝑧 ) ) ) ↔ 𝑦 = 𝑧 ) ) |
| 253 | 223 252 | pm2.61dan | ⊢ ( ( 𝜑 ∧ ( 𝑦 ∈ ( 𝑅1 ‘ 𝐶 ) ∧ 𝑧 ∈ ( 𝑅1 ‘ 𝐶 ) ) ) → ( if ( 𝐶 = ∪ 𝐶 , ( ( suc ∪ ran ∪ ( 𝐺 “ 𝐶 ) ·o ( rank ‘ 𝑦 ) ) +o ( ( 𝐺 ‘ suc ( rank ‘ 𝑦 ) ) ‘ 𝑦 ) ) , ( 𝐹 ‘ ( 𝐻 “ 𝑦 ) ) ) = if ( 𝐶 = ∪ 𝐶 , ( ( suc ∪ ran ∪ ( 𝐺 “ 𝐶 ) ·o ( rank ‘ 𝑧 ) ) +o ( ( 𝐺 ‘ suc ( rank ‘ 𝑧 ) ) ‘ 𝑧 ) ) , ( 𝐹 ‘ ( 𝐻 “ 𝑧 ) ) ) ↔ 𝑦 = 𝑧 ) ) |
| 254 | 253 | ex | ⊢ ( 𝜑 → ( ( 𝑦 ∈ ( 𝑅1 ‘ 𝐶 ) ∧ 𝑧 ∈ ( 𝑅1 ‘ 𝐶 ) ) → ( if ( 𝐶 = ∪ 𝐶 , ( ( suc ∪ ran ∪ ( 𝐺 “ 𝐶 ) ·o ( rank ‘ 𝑦 ) ) +o ( ( 𝐺 ‘ suc ( rank ‘ 𝑦 ) ) ‘ 𝑦 ) ) , ( 𝐹 ‘ ( 𝐻 “ 𝑦 ) ) ) = if ( 𝐶 = ∪ 𝐶 , ( ( suc ∪ ran ∪ ( 𝐺 “ 𝐶 ) ·o ( rank ‘ 𝑧 ) ) +o ( ( 𝐺 ‘ suc ( rank ‘ 𝑧 ) ) ‘ 𝑧 ) ) , ( 𝐹 ‘ ( 𝐻 “ 𝑧 ) ) ) ↔ 𝑦 = 𝑧 ) ) ) |
| 255 | 159 254 | dom2lem | ⊢ ( 𝜑 → ( 𝑦 ∈ ( 𝑅1 ‘ 𝐶 ) ↦ if ( 𝐶 = ∪ 𝐶 , ( ( suc ∪ ran ∪ ( 𝐺 “ 𝐶 ) ·o ( rank ‘ 𝑦 ) ) +o ( ( 𝐺 ‘ suc ( rank ‘ 𝑦 ) ) ‘ 𝑦 ) ) , ( 𝐹 ‘ ( 𝐻 “ 𝑦 ) ) ) ) : ( 𝑅1 ‘ 𝐶 ) –1-1→ On ) |
| 256 | 1 2 3 4 5 | dfac12lem1 | ⊢ ( 𝜑 → ( 𝐺 ‘ 𝐶 ) = ( 𝑦 ∈ ( 𝑅1 ‘ 𝐶 ) ↦ if ( 𝐶 = ∪ 𝐶 , ( ( suc ∪ ran ∪ ( 𝐺 “ 𝐶 ) ·o ( rank ‘ 𝑦 ) ) +o ( ( 𝐺 ‘ suc ( rank ‘ 𝑦 ) ) ‘ 𝑦 ) ) , ( 𝐹 ‘ ( 𝐻 “ 𝑦 ) ) ) ) ) |
| 257 | f1eq1 | ⊢ ( ( 𝐺 ‘ 𝐶 ) = ( 𝑦 ∈ ( 𝑅1 ‘ 𝐶 ) ↦ if ( 𝐶 = ∪ 𝐶 , ( ( suc ∪ ran ∪ ( 𝐺 “ 𝐶 ) ·o ( rank ‘ 𝑦 ) ) +o ( ( 𝐺 ‘ suc ( rank ‘ 𝑦 ) ) ‘ 𝑦 ) ) , ( 𝐹 ‘ ( 𝐻 “ 𝑦 ) ) ) ) → ( ( 𝐺 ‘ 𝐶 ) : ( 𝑅1 ‘ 𝐶 ) –1-1→ On ↔ ( 𝑦 ∈ ( 𝑅1 ‘ 𝐶 ) ↦ if ( 𝐶 = ∪ 𝐶 , ( ( suc ∪ ran ∪ ( 𝐺 “ 𝐶 ) ·o ( rank ‘ 𝑦 ) ) +o ( ( 𝐺 ‘ suc ( rank ‘ 𝑦 ) ) ‘ 𝑦 ) ) , ( 𝐹 ‘ ( 𝐻 “ 𝑦 ) ) ) ) : ( 𝑅1 ‘ 𝐶 ) –1-1→ On ) ) | |
| 258 | 256 257 | syl | ⊢ ( 𝜑 → ( ( 𝐺 ‘ 𝐶 ) : ( 𝑅1 ‘ 𝐶 ) –1-1→ On ↔ ( 𝑦 ∈ ( 𝑅1 ‘ 𝐶 ) ↦ if ( 𝐶 = ∪ 𝐶 , ( ( suc ∪ ran ∪ ( 𝐺 “ 𝐶 ) ·o ( rank ‘ 𝑦 ) ) +o ( ( 𝐺 ‘ suc ( rank ‘ 𝑦 ) ) ‘ 𝑦 ) ) , ( 𝐹 ‘ ( 𝐻 “ 𝑦 ) ) ) ) : ( 𝑅1 ‘ 𝐶 ) –1-1→ On ) ) |
| 259 | 255 258 | mpbird | ⊢ ( 𝜑 → ( 𝐺 ‘ 𝐶 ) : ( 𝑅1 ‘ 𝐶 ) –1-1→ On ) |