This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Closure law for ordinal addition. Proposition 8.2 of TakeutiZaring p. 57. Remark 2.8 of Schloeder p. 5. (Contributed by NM, 5-May-1995)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | oacl | ⊢ ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ) → ( 𝐴 +o 𝐵 ) ∈ On ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | oveq2 | ⊢ ( 𝑥 = ∅ → ( 𝐴 +o 𝑥 ) = ( 𝐴 +o ∅ ) ) | |
| 2 | 1 | eleq1d | ⊢ ( 𝑥 = ∅ → ( ( 𝐴 +o 𝑥 ) ∈ On ↔ ( 𝐴 +o ∅ ) ∈ On ) ) |
| 3 | oveq2 | ⊢ ( 𝑥 = 𝑦 → ( 𝐴 +o 𝑥 ) = ( 𝐴 +o 𝑦 ) ) | |
| 4 | 3 | eleq1d | ⊢ ( 𝑥 = 𝑦 → ( ( 𝐴 +o 𝑥 ) ∈ On ↔ ( 𝐴 +o 𝑦 ) ∈ On ) ) |
| 5 | oveq2 | ⊢ ( 𝑥 = suc 𝑦 → ( 𝐴 +o 𝑥 ) = ( 𝐴 +o suc 𝑦 ) ) | |
| 6 | 5 | eleq1d | ⊢ ( 𝑥 = suc 𝑦 → ( ( 𝐴 +o 𝑥 ) ∈ On ↔ ( 𝐴 +o suc 𝑦 ) ∈ On ) ) |
| 7 | oveq2 | ⊢ ( 𝑥 = 𝐵 → ( 𝐴 +o 𝑥 ) = ( 𝐴 +o 𝐵 ) ) | |
| 8 | 7 | eleq1d | ⊢ ( 𝑥 = 𝐵 → ( ( 𝐴 +o 𝑥 ) ∈ On ↔ ( 𝐴 +o 𝐵 ) ∈ On ) ) |
| 9 | oa0 | ⊢ ( 𝐴 ∈ On → ( 𝐴 +o ∅ ) = 𝐴 ) | |
| 10 | 9 | eleq1d | ⊢ ( 𝐴 ∈ On → ( ( 𝐴 +o ∅ ) ∈ On ↔ 𝐴 ∈ On ) ) |
| 11 | 10 | ibir | ⊢ ( 𝐴 ∈ On → ( 𝐴 +o ∅ ) ∈ On ) |
| 12 | onsuc | ⊢ ( ( 𝐴 +o 𝑦 ) ∈ On → suc ( 𝐴 +o 𝑦 ) ∈ On ) | |
| 13 | oasuc | ⊢ ( ( 𝐴 ∈ On ∧ 𝑦 ∈ On ) → ( 𝐴 +o suc 𝑦 ) = suc ( 𝐴 +o 𝑦 ) ) | |
| 14 | 13 | eleq1d | ⊢ ( ( 𝐴 ∈ On ∧ 𝑦 ∈ On ) → ( ( 𝐴 +o suc 𝑦 ) ∈ On ↔ suc ( 𝐴 +o 𝑦 ) ∈ On ) ) |
| 15 | 12 14 | imbitrrid | ⊢ ( ( 𝐴 ∈ On ∧ 𝑦 ∈ On ) → ( ( 𝐴 +o 𝑦 ) ∈ On → ( 𝐴 +o suc 𝑦 ) ∈ On ) ) |
| 16 | 15 | expcom | ⊢ ( 𝑦 ∈ On → ( 𝐴 ∈ On → ( ( 𝐴 +o 𝑦 ) ∈ On → ( 𝐴 +o suc 𝑦 ) ∈ On ) ) ) |
| 17 | vex | ⊢ 𝑥 ∈ V | |
| 18 | iunon | ⊢ ( ( 𝑥 ∈ V ∧ ∀ 𝑦 ∈ 𝑥 ( 𝐴 +o 𝑦 ) ∈ On ) → ∪ 𝑦 ∈ 𝑥 ( 𝐴 +o 𝑦 ) ∈ On ) | |
| 19 | 17 18 | mpan | ⊢ ( ∀ 𝑦 ∈ 𝑥 ( 𝐴 +o 𝑦 ) ∈ On → ∪ 𝑦 ∈ 𝑥 ( 𝐴 +o 𝑦 ) ∈ On ) |
| 20 | oalim | ⊢ ( ( 𝐴 ∈ On ∧ ( 𝑥 ∈ V ∧ Lim 𝑥 ) ) → ( 𝐴 +o 𝑥 ) = ∪ 𝑦 ∈ 𝑥 ( 𝐴 +o 𝑦 ) ) | |
| 21 | 17 20 | mpanr1 | ⊢ ( ( 𝐴 ∈ On ∧ Lim 𝑥 ) → ( 𝐴 +o 𝑥 ) = ∪ 𝑦 ∈ 𝑥 ( 𝐴 +o 𝑦 ) ) |
| 22 | 21 | eleq1d | ⊢ ( ( 𝐴 ∈ On ∧ Lim 𝑥 ) → ( ( 𝐴 +o 𝑥 ) ∈ On ↔ ∪ 𝑦 ∈ 𝑥 ( 𝐴 +o 𝑦 ) ∈ On ) ) |
| 23 | 19 22 | imbitrrid | ⊢ ( ( 𝐴 ∈ On ∧ Lim 𝑥 ) → ( ∀ 𝑦 ∈ 𝑥 ( 𝐴 +o 𝑦 ) ∈ On → ( 𝐴 +o 𝑥 ) ∈ On ) ) |
| 24 | 23 | expcom | ⊢ ( Lim 𝑥 → ( 𝐴 ∈ On → ( ∀ 𝑦 ∈ 𝑥 ( 𝐴 +o 𝑦 ) ∈ On → ( 𝐴 +o 𝑥 ) ∈ On ) ) ) |
| 25 | 2 4 6 8 11 16 24 | tfinds3 | ⊢ ( 𝐵 ∈ On → ( 𝐴 ∈ On → ( 𝐴 +o 𝐵 ) ∈ On ) ) |
| 26 | 25 | impcom | ⊢ ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ) → ( 𝐴 +o 𝐵 ) ∈ On ) |