This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Any member of the cumulative hierarchy is well-founded. (Contributed by Mario Carneiro, 28-May-2013) (Revised by Mario Carneiro, 16-Nov-2014)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | r1elwf | ⊢ ( 𝐴 ∈ ( 𝑅1 ‘ 𝐵 ) → 𝐴 ∈ ∪ ( 𝑅1 “ On ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | r1funlim | ⊢ ( Fun 𝑅1 ∧ Lim dom 𝑅1 ) | |
| 2 | 1 | simpri | ⊢ Lim dom 𝑅1 |
| 3 | limord | ⊢ ( Lim dom 𝑅1 → Ord dom 𝑅1 ) | |
| 4 | ordsson | ⊢ ( Ord dom 𝑅1 → dom 𝑅1 ⊆ On ) | |
| 5 | 2 3 4 | mp2b | ⊢ dom 𝑅1 ⊆ On |
| 6 | elfvdm | ⊢ ( 𝐴 ∈ ( 𝑅1 ‘ 𝐵 ) → 𝐵 ∈ dom 𝑅1 ) | |
| 7 | 5 6 | sselid | ⊢ ( 𝐴 ∈ ( 𝑅1 ‘ 𝐵 ) → 𝐵 ∈ On ) |
| 8 | r1tr | ⊢ Tr ( 𝑅1 ‘ 𝐵 ) | |
| 9 | trss | ⊢ ( Tr ( 𝑅1 ‘ 𝐵 ) → ( 𝐴 ∈ ( 𝑅1 ‘ 𝐵 ) → 𝐴 ⊆ ( 𝑅1 ‘ 𝐵 ) ) ) | |
| 10 | 8 9 | ax-mp | ⊢ ( 𝐴 ∈ ( 𝑅1 ‘ 𝐵 ) → 𝐴 ⊆ ( 𝑅1 ‘ 𝐵 ) ) |
| 11 | elpwg | ⊢ ( 𝐴 ∈ ( 𝑅1 ‘ 𝐵 ) → ( 𝐴 ∈ 𝒫 ( 𝑅1 ‘ 𝐵 ) ↔ 𝐴 ⊆ ( 𝑅1 ‘ 𝐵 ) ) ) | |
| 12 | 10 11 | mpbird | ⊢ ( 𝐴 ∈ ( 𝑅1 ‘ 𝐵 ) → 𝐴 ∈ 𝒫 ( 𝑅1 ‘ 𝐵 ) ) |
| 13 | r1sucg | ⊢ ( 𝐵 ∈ dom 𝑅1 → ( 𝑅1 ‘ suc 𝐵 ) = 𝒫 ( 𝑅1 ‘ 𝐵 ) ) | |
| 14 | 6 13 | syl | ⊢ ( 𝐴 ∈ ( 𝑅1 ‘ 𝐵 ) → ( 𝑅1 ‘ suc 𝐵 ) = 𝒫 ( 𝑅1 ‘ 𝐵 ) ) |
| 15 | 12 14 | eleqtrrd | ⊢ ( 𝐴 ∈ ( 𝑅1 ‘ 𝐵 ) → 𝐴 ∈ ( 𝑅1 ‘ suc 𝐵 ) ) |
| 16 | suceq | ⊢ ( 𝑥 = 𝐵 → suc 𝑥 = suc 𝐵 ) | |
| 17 | 16 | fveq2d | ⊢ ( 𝑥 = 𝐵 → ( 𝑅1 ‘ suc 𝑥 ) = ( 𝑅1 ‘ suc 𝐵 ) ) |
| 18 | 17 | eleq2d | ⊢ ( 𝑥 = 𝐵 → ( 𝐴 ∈ ( 𝑅1 ‘ suc 𝑥 ) ↔ 𝐴 ∈ ( 𝑅1 ‘ suc 𝐵 ) ) ) |
| 19 | 18 | rspcev | ⊢ ( ( 𝐵 ∈ On ∧ 𝐴 ∈ ( 𝑅1 ‘ suc 𝐵 ) ) → ∃ 𝑥 ∈ On 𝐴 ∈ ( 𝑅1 ‘ suc 𝑥 ) ) |
| 20 | 7 15 19 | syl2anc | ⊢ ( 𝐴 ∈ ( 𝑅1 ‘ 𝐵 ) → ∃ 𝑥 ∈ On 𝐴 ∈ ( 𝑅1 ‘ suc 𝑥 ) ) |
| 21 | rankwflemb | ⊢ ( 𝐴 ∈ ∪ ( 𝑅1 “ On ) ↔ ∃ 𝑥 ∈ On 𝐴 ∈ ( 𝑅1 ‘ suc 𝑥 ) ) | |
| 22 | 20 21 | sylibr | ⊢ ( 𝐴 ∈ ( 𝑅1 ‘ 𝐵 ) → 𝐴 ∈ ∪ ( 𝑅1 “ On ) ) |