This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for dfac12 . (Contributed by Mario Carneiro, 29-May-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | dfac12.1 | ⊢ ( 𝜑 → 𝐴 ∈ On ) | |
| dfac12.3 | ⊢ ( 𝜑 → 𝐹 : 𝒫 ( har ‘ ( 𝑅1 ‘ 𝐴 ) ) –1-1→ On ) | ||
| dfac12.4 | ⊢ 𝐺 = recs ( ( 𝑥 ∈ V ↦ ( 𝑦 ∈ ( 𝑅1 ‘ dom 𝑥 ) ↦ if ( dom 𝑥 = ∪ dom 𝑥 , ( ( suc ∪ ran ∪ ran 𝑥 ·o ( rank ‘ 𝑦 ) ) +o ( ( 𝑥 ‘ suc ( rank ‘ 𝑦 ) ) ‘ 𝑦 ) ) , ( 𝐹 ‘ ( ( ◡ OrdIso ( E , ran ( 𝑥 ‘ ∪ dom 𝑥 ) ) ∘ ( 𝑥 ‘ ∪ dom 𝑥 ) ) “ 𝑦 ) ) ) ) ) ) | ||
| dfac12.5 | ⊢ ( 𝜑 → 𝐶 ∈ On ) | ||
| dfac12.h | ⊢ 𝐻 = ( ◡ OrdIso ( E , ran ( 𝐺 ‘ ∪ 𝐶 ) ) ∘ ( 𝐺 ‘ ∪ 𝐶 ) ) | ||
| Assertion | dfac12lem1 | ⊢ ( 𝜑 → ( 𝐺 ‘ 𝐶 ) = ( 𝑦 ∈ ( 𝑅1 ‘ 𝐶 ) ↦ if ( 𝐶 = ∪ 𝐶 , ( ( suc ∪ ran ∪ ( 𝐺 “ 𝐶 ) ·o ( rank ‘ 𝑦 ) ) +o ( ( 𝐺 ‘ suc ( rank ‘ 𝑦 ) ) ‘ 𝑦 ) ) , ( 𝐹 ‘ ( 𝐻 “ 𝑦 ) ) ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dfac12.1 | ⊢ ( 𝜑 → 𝐴 ∈ On ) | |
| 2 | dfac12.3 | ⊢ ( 𝜑 → 𝐹 : 𝒫 ( har ‘ ( 𝑅1 ‘ 𝐴 ) ) –1-1→ On ) | |
| 3 | dfac12.4 | ⊢ 𝐺 = recs ( ( 𝑥 ∈ V ↦ ( 𝑦 ∈ ( 𝑅1 ‘ dom 𝑥 ) ↦ if ( dom 𝑥 = ∪ dom 𝑥 , ( ( suc ∪ ran ∪ ran 𝑥 ·o ( rank ‘ 𝑦 ) ) +o ( ( 𝑥 ‘ suc ( rank ‘ 𝑦 ) ) ‘ 𝑦 ) ) , ( 𝐹 ‘ ( ( ◡ OrdIso ( E , ran ( 𝑥 ‘ ∪ dom 𝑥 ) ) ∘ ( 𝑥 ‘ ∪ dom 𝑥 ) ) “ 𝑦 ) ) ) ) ) ) | |
| 4 | dfac12.5 | ⊢ ( 𝜑 → 𝐶 ∈ On ) | |
| 5 | dfac12.h | ⊢ 𝐻 = ( ◡ OrdIso ( E , ran ( 𝐺 ‘ ∪ 𝐶 ) ) ∘ ( 𝐺 ‘ ∪ 𝐶 ) ) | |
| 6 | 3 | tfr2 | ⊢ ( 𝐶 ∈ On → ( 𝐺 ‘ 𝐶 ) = ( ( 𝑥 ∈ V ↦ ( 𝑦 ∈ ( 𝑅1 ‘ dom 𝑥 ) ↦ if ( dom 𝑥 = ∪ dom 𝑥 , ( ( suc ∪ ran ∪ ran 𝑥 ·o ( rank ‘ 𝑦 ) ) +o ( ( 𝑥 ‘ suc ( rank ‘ 𝑦 ) ) ‘ 𝑦 ) ) , ( 𝐹 ‘ ( ( ◡ OrdIso ( E , ran ( 𝑥 ‘ ∪ dom 𝑥 ) ) ∘ ( 𝑥 ‘ ∪ dom 𝑥 ) ) “ 𝑦 ) ) ) ) ) ‘ ( 𝐺 ↾ 𝐶 ) ) ) |
| 7 | 4 6 | syl | ⊢ ( 𝜑 → ( 𝐺 ‘ 𝐶 ) = ( ( 𝑥 ∈ V ↦ ( 𝑦 ∈ ( 𝑅1 ‘ dom 𝑥 ) ↦ if ( dom 𝑥 = ∪ dom 𝑥 , ( ( suc ∪ ran ∪ ran 𝑥 ·o ( rank ‘ 𝑦 ) ) +o ( ( 𝑥 ‘ suc ( rank ‘ 𝑦 ) ) ‘ 𝑦 ) ) , ( 𝐹 ‘ ( ( ◡ OrdIso ( E , ran ( 𝑥 ‘ ∪ dom 𝑥 ) ) ∘ ( 𝑥 ‘ ∪ dom 𝑥 ) ) “ 𝑦 ) ) ) ) ) ‘ ( 𝐺 ↾ 𝐶 ) ) ) |
| 8 | 3 | tfr1 | ⊢ 𝐺 Fn On |
| 9 | fnfun | ⊢ ( 𝐺 Fn On → Fun 𝐺 ) | |
| 10 | 8 9 | ax-mp | ⊢ Fun 𝐺 |
| 11 | resfunexg | ⊢ ( ( Fun 𝐺 ∧ 𝐶 ∈ On ) → ( 𝐺 ↾ 𝐶 ) ∈ V ) | |
| 12 | 10 4 11 | sylancr | ⊢ ( 𝜑 → ( 𝐺 ↾ 𝐶 ) ∈ V ) |
| 13 | dmeq | ⊢ ( 𝑥 = ( 𝐺 ↾ 𝐶 ) → dom 𝑥 = dom ( 𝐺 ↾ 𝐶 ) ) | |
| 14 | 13 | fveq2d | ⊢ ( 𝑥 = ( 𝐺 ↾ 𝐶 ) → ( 𝑅1 ‘ dom 𝑥 ) = ( 𝑅1 ‘ dom ( 𝐺 ↾ 𝐶 ) ) ) |
| 15 | 13 | unieqd | ⊢ ( 𝑥 = ( 𝐺 ↾ 𝐶 ) → ∪ dom 𝑥 = ∪ dom ( 𝐺 ↾ 𝐶 ) ) |
| 16 | 13 15 | eqeq12d | ⊢ ( 𝑥 = ( 𝐺 ↾ 𝐶 ) → ( dom 𝑥 = ∪ dom 𝑥 ↔ dom ( 𝐺 ↾ 𝐶 ) = ∪ dom ( 𝐺 ↾ 𝐶 ) ) ) |
| 17 | rneq | ⊢ ( 𝑥 = ( 𝐺 ↾ 𝐶 ) → ran 𝑥 = ran ( 𝐺 ↾ 𝐶 ) ) | |
| 18 | df-ima | ⊢ ( 𝐺 “ 𝐶 ) = ran ( 𝐺 ↾ 𝐶 ) | |
| 19 | 17 18 | eqtr4di | ⊢ ( 𝑥 = ( 𝐺 ↾ 𝐶 ) → ran 𝑥 = ( 𝐺 “ 𝐶 ) ) |
| 20 | 19 | unieqd | ⊢ ( 𝑥 = ( 𝐺 ↾ 𝐶 ) → ∪ ran 𝑥 = ∪ ( 𝐺 “ 𝐶 ) ) |
| 21 | 20 | rneqd | ⊢ ( 𝑥 = ( 𝐺 ↾ 𝐶 ) → ran ∪ ran 𝑥 = ran ∪ ( 𝐺 “ 𝐶 ) ) |
| 22 | 21 | unieqd | ⊢ ( 𝑥 = ( 𝐺 ↾ 𝐶 ) → ∪ ran ∪ ran 𝑥 = ∪ ran ∪ ( 𝐺 “ 𝐶 ) ) |
| 23 | suceq | ⊢ ( ∪ ran ∪ ran 𝑥 = ∪ ran ∪ ( 𝐺 “ 𝐶 ) → suc ∪ ran ∪ ran 𝑥 = suc ∪ ran ∪ ( 𝐺 “ 𝐶 ) ) | |
| 24 | 22 23 | syl | ⊢ ( 𝑥 = ( 𝐺 ↾ 𝐶 ) → suc ∪ ran ∪ ran 𝑥 = suc ∪ ran ∪ ( 𝐺 “ 𝐶 ) ) |
| 25 | 24 | oveq1d | ⊢ ( 𝑥 = ( 𝐺 ↾ 𝐶 ) → ( suc ∪ ran ∪ ran 𝑥 ·o ( rank ‘ 𝑦 ) ) = ( suc ∪ ran ∪ ( 𝐺 “ 𝐶 ) ·o ( rank ‘ 𝑦 ) ) ) |
| 26 | fveq1 | ⊢ ( 𝑥 = ( 𝐺 ↾ 𝐶 ) → ( 𝑥 ‘ suc ( rank ‘ 𝑦 ) ) = ( ( 𝐺 ↾ 𝐶 ) ‘ suc ( rank ‘ 𝑦 ) ) ) | |
| 27 | 26 | fveq1d | ⊢ ( 𝑥 = ( 𝐺 ↾ 𝐶 ) → ( ( 𝑥 ‘ suc ( rank ‘ 𝑦 ) ) ‘ 𝑦 ) = ( ( ( 𝐺 ↾ 𝐶 ) ‘ suc ( rank ‘ 𝑦 ) ) ‘ 𝑦 ) ) |
| 28 | 25 27 | oveq12d | ⊢ ( 𝑥 = ( 𝐺 ↾ 𝐶 ) → ( ( suc ∪ ran ∪ ran 𝑥 ·o ( rank ‘ 𝑦 ) ) +o ( ( 𝑥 ‘ suc ( rank ‘ 𝑦 ) ) ‘ 𝑦 ) ) = ( ( suc ∪ ran ∪ ( 𝐺 “ 𝐶 ) ·o ( rank ‘ 𝑦 ) ) +o ( ( ( 𝐺 ↾ 𝐶 ) ‘ suc ( rank ‘ 𝑦 ) ) ‘ 𝑦 ) ) ) |
| 29 | id | ⊢ ( 𝑥 = ( 𝐺 ↾ 𝐶 ) → 𝑥 = ( 𝐺 ↾ 𝐶 ) ) | |
| 30 | 29 15 | fveq12d | ⊢ ( 𝑥 = ( 𝐺 ↾ 𝐶 ) → ( 𝑥 ‘ ∪ dom 𝑥 ) = ( ( 𝐺 ↾ 𝐶 ) ‘ ∪ dom ( 𝐺 ↾ 𝐶 ) ) ) |
| 31 | 30 | rneqd | ⊢ ( 𝑥 = ( 𝐺 ↾ 𝐶 ) → ran ( 𝑥 ‘ ∪ dom 𝑥 ) = ran ( ( 𝐺 ↾ 𝐶 ) ‘ ∪ dom ( 𝐺 ↾ 𝐶 ) ) ) |
| 32 | oieq2 | ⊢ ( ran ( 𝑥 ‘ ∪ dom 𝑥 ) = ran ( ( 𝐺 ↾ 𝐶 ) ‘ ∪ dom ( 𝐺 ↾ 𝐶 ) ) → OrdIso ( E , ran ( 𝑥 ‘ ∪ dom 𝑥 ) ) = OrdIso ( E , ran ( ( 𝐺 ↾ 𝐶 ) ‘ ∪ dom ( 𝐺 ↾ 𝐶 ) ) ) ) | |
| 33 | 31 32 | syl | ⊢ ( 𝑥 = ( 𝐺 ↾ 𝐶 ) → OrdIso ( E , ran ( 𝑥 ‘ ∪ dom 𝑥 ) ) = OrdIso ( E , ran ( ( 𝐺 ↾ 𝐶 ) ‘ ∪ dom ( 𝐺 ↾ 𝐶 ) ) ) ) |
| 34 | 33 | cnveqd | ⊢ ( 𝑥 = ( 𝐺 ↾ 𝐶 ) → ◡ OrdIso ( E , ran ( 𝑥 ‘ ∪ dom 𝑥 ) ) = ◡ OrdIso ( E , ran ( ( 𝐺 ↾ 𝐶 ) ‘ ∪ dom ( 𝐺 ↾ 𝐶 ) ) ) ) |
| 35 | 34 30 | coeq12d | ⊢ ( 𝑥 = ( 𝐺 ↾ 𝐶 ) → ( ◡ OrdIso ( E , ran ( 𝑥 ‘ ∪ dom 𝑥 ) ) ∘ ( 𝑥 ‘ ∪ dom 𝑥 ) ) = ( ◡ OrdIso ( E , ran ( ( 𝐺 ↾ 𝐶 ) ‘ ∪ dom ( 𝐺 ↾ 𝐶 ) ) ) ∘ ( ( 𝐺 ↾ 𝐶 ) ‘ ∪ dom ( 𝐺 ↾ 𝐶 ) ) ) ) |
| 36 | 35 | imaeq1d | ⊢ ( 𝑥 = ( 𝐺 ↾ 𝐶 ) → ( ( ◡ OrdIso ( E , ran ( 𝑥 ‘ ∪ dom 𝑥 ) ) ∘ ( 𝑥 ‘ ∪ dom 𝑥 ) ) “ 𝑦 ) = ( ( ◡ OrdIso ( E , ran ( ( 𝐺 ↾ 𝐶 ) ‘ ∪ dom ( 𝐺 ↾ 𝐶 ) ) ) ∘ ( ( 𝐺 ↾ 𝐶 ) ‘ ∪ dom ( 𝐺 ↾ 𝐶 ) ) ) “ 𝑦 ) ) |
| 37 | 36 | fveq2d | ⊢ ( 𝑥 = ( 𝐺 ↾ 𝐶 ) → ( 𝐹 ‘ ( ( ◡ OrdIso ( E , ran ( 𝑥 ‘ ∪ dom 𝑥 ) ) ∘ ( 𝑥 ‘ ∪ dom 𝑥 ) ) “ 𝑦 ) ) = ( 𝐹 ‘ ( ( ◡ OrdIso ( E , ran ( ( 𝐺 ↾ 𝐶 ) ‘ ∪ dom ( 𝐺 ↾ 𝐶 ) ) ) ∘ ( ( 𝐺 ↾ 𝐶 ) ‘ ∪ dom ( 𝐺 ↾ 𝐶 ) ) ) “ 𝑦 ) ) ) |
| 38 | 16 28 37 | ifbieq12d | ⊢ ( 𝑥 = ( 𝐺 ↾ 𝐶 ) → if ( dom 𝑥 = ∪ dom 𝑥 , ( ( suc ∪ ran ∪ ran 𝑥 ·o ( rank ‘ 𝑦 ) ) +o ( ( 𝑥 ‘ suc ( rank ‘ 𝑦 ) ) ‘ 𝑦 ) ) , ( 𝐹 ‘ ( ( ◡ OrdIso ( E , ran ( 𝑥 ‘ ∪ dom 𝑥 ) ) ∘ ( 𝑥 ‘ ∪ dom 𝑥 ) ) “ 𝑦 ) ) ) = if ( dom ( 𝐺 ↾ 𝐶 ) = ∪ dom ( 𝐺 ↾ 𝐶 ) , ( ( suc ∪ ran ∪ ( 𝐺 “ 𝐶 ) ·o ( rank ‘ 𝑦 ) ) +o ( ( ( 𝐺 ↾ 𝐶 ) ‘ suc ( rank ‘ 𝑦 ) ) ‘ 𝑦 ) ) , ( 𝐹 ‘ ( ( ◡ OrdIso ( E , ran ( ( 𝐺 ↾ 𝐶 ) ‘ ∪ dom ( 𝐺 ↾ 𝐶 ) ) ) ∘ ( ( 𝐺 ↾ 𝐶 ) ‘ ∪ dom ( 𝐺 ↾ 𝐶 ) ) ) “ 𝑦 ) ) ) ) |
| 39 | 14 38 | mpteq12dv | ⊢ ( 𝑥 = ( 𝐺 ↾ 𝐶 ) → ( 𝑦 ∈ ( 𝑅1 ‘ dom 𝑥 ) ↦ if ( dom 𝑥 = ∪ dom 𝑥 , ( ( suc ∪ ran ∪ ran 𝑥 ·o ( rank ‘ 𝑦 ) ) +o ( ( 𝑥 ‘ suc ( rank ‘ 𝑦 ) ) ‘ 𝑦 ) ) , ( 𝐹 ‘ ( ( ◡ OrdIso ( E , ran ( 𝑥 ‘ ∪ dom 𝑥 ) ) ∘ ( 𝑥 ‘ ∪ dom 𝑥 ) ) “ 𝑦 ) ) ) ) = ( 𝑦 ∈ ( 𝑅1 ‘ dom ( 𝐺 ↾ 𝐶 ) ) ↦ if ( dom ( 𝐺 ↾ 𝐶 ) = ∪ dom ( 𝐺 ↾ 𝐶 ) , ( ( suc ∪ ran ∪ ( 𝐺 “ 𝐶 ) ·o ( rank ‘ 𝑦 ) ) +o ( ( ( 𝐺 ↾ 𝐶 ) ‘ suc ( rank ‘ 𝑦 ) ) ‘ 𝑦 ) ) , ( 𝐹 ‘ ( ( ◡ OrdIso ( E , ran ( ( 𝐺 ↾ 𝐶 ) ‘ ∪ dom ( 𝐺 ↾ 𝐶 ) ) ) ∘ ( ( 𝐺 ↾ 𝐶 ) ‘ ∪ dom ( 𝐺 ↾ 𝐶 ) ) ) “ 𝑦 ) ) ) ) ) |
| 40 | eqid | ⊢ ( 𝑥 ∈ V ↦ ( 𝑦 ∈ ( 𝑅1 ‘ dom 𝑥 ) ↦ if ( dom 𝑥 = ∪ dom 𝑥 , ( ( suc ∪ ran ∪ ran 𝑥 ·o ( rank ‘ 𝑦 ) ) +o ( ( 𝑥 ‘ suc ( rank ‘ 𝑦 ) ) ‘ 𝑦 ) ) , ( 𝐹 ‘ ( ( ◡ OrdIso ( E , ran ( 𝑥 ‘ ∪ dom 𝑥 ) ) ∘ ( 𝑥 ‘ ∪ dom 𝑥 ) ) “ 𝑦 ) ) ) ) ) = ( 𝑥 ∈ V ↦ ( 𝑦 ∈ ( 𝑅1 ‘ dom 𝑥 ) ↦ if ( dom 𝑥 = ∪ dom 𝑥 , ( ( suc ∪ ran ∪ ran 𝑥 ·o ( rank ‘ 𝑦 ) ) +o ( ( 𝑥 ‘ suc ( rank ‘ 𝑦 ) ) ‘ 𝑦 ) ) , ( 𝐹 ‘ ( ( ◡ OrdIso ( E , ran ( 𝑥 ‘ ∪ dom 𝑥 ) ) ∘ ( 𝑥 ‘ ∪ dom 𝑥 ) ) “ 𝑦 ) ) ) ) ) | |
| 41 | fvex | ⊢ ( 𝑅1 ‘ dom ( 𝐺 ↾ 𝐶 ) ) ∈ V | |
| 42 | 41 | mptex | ⊢ ( 𝑦 ∈ ( 𝑅1 ‘ dom ( 𝐺 ↾ 𝐶 ) ) ↦ if ( dom ( 𝐺 ↾ 𝐶 ) = ∪ dom ( 𝐺 ↾ 𝐶 ) , ( ( suc ∪ ran ∪ ( 𝐺 “ 𝐶 ) ·o ( rank ‘ 𝑦 ) ) +o ( ( ( 𝐺 ↾ 𝐶 ) ‘ suc ( rank ‘ 𝑦 ) ) ‘ 𝑦 ) ) , ( 𝐹 ‘ ( ( ◡ OrdIso ( E , ran ( ( 𝐺 ↾ 𝐶 ) ‘ ∪ dom ( 𝐺 ↾ 𝐶 ) ) ) ∘ ( ( 𝐺 ↾ 𝐶 ) ‘ ∪ dom ( 𝐺 ↾ 𝐶 ) ) ) “ 𝑦 ) ) ) ) ∈ V |
| 43 | 39 40 42 | fvmpt | ⊢ ( ( 𝐺 ↾ 𝐶 ) ∈ V → ( ( 𝑥 ∈ V ↦ ( 𝑦 ∈ ( 𝑅1 ‘ dom 𝑥 ) ↦ if ( dom 𝑥 = ∪ dom 𝑥 , ( ( suc ∪ ran ∪ ran 𝑥 ·o ( rank ‘ 𝑦 ) ) +o ( ( 𝑥 ‘ suc ( rank ‘ 𝑦 ) ) ‘ 𝑦 ) ) , ( 𝐹 ‘ ( ( ◡ OrdIso ( E , ran ( 𝑥 ‘ ∪ dom 𝑥 ) ) ∘ ( 𝑥 ‘ ∪ dom 𝑥 ) ) “ 𝑦 ) ) ) ) ) ‘ ( 𝐺 ↾ 𝐶 ) ) = ( 𝑦 ∈ ( 𝑅1 ‘ dom ( 𝐺 ↾ 𝐶 ) ) ↦ if ( dom ( 𝐺 ↾ 𝐶 ) = ∪ dom ( 𝐺 ↾ 𝐶 ) , ( ( suc ∪ ran ∪ ( 𝐺 “ 𝐶 ) ·o ( rank ‘ 𝑦 ) ) +o ( ( ( 𝐺 ↾ 𝐶 ) ‘ suc ( rank ‘ 𝑦 ) ) ‘ 𝑦 ) ) , ( 𝐹 ‘ ( ( ◡ OrdIso ( E , ran ( ( 𝐺 ↾ 𝐶 ) ‘ ∪ dom ( 𝐺 ↾ 𝐶 ) ) ) ∘ ( ( 𝐺 ↾ 𝐶 ) ‘ ∪ dom ( 𝐺 ↾ 𝐶 ) ) ) “ 𝑦 ) ) ) ) ) |
| 44 | 12 43 | syl | ⊢ ( 𝜑 → ( ( 𝑥 ∈ V ↦ ( 𝑦 ∈ ( 𝑅1 ‘ dom 𝑥 ) ↦ if ( dom 𝑥 = ∪ dom 𝑥 , ( ( suc ∪ ran ∪ ran 𝑥 ·o ( rank ‘ 𝑦 ) ) +o ( ( 𝑥 ‘ suc ( rank ‘ 𝑦 ) ) ‘ 𝑦 ) ) , ( 𝐹 ‘ ( ( ◡ OrdIso ( E , ran ( 𝑥 ‘ ∪ dom 𝑥 ) ) ∘ ( 𝑥 ‘ ∪ dom 𝑥 ) ) “ 𝑦 ) ) ) ) ) ‘ ( 𝐺 ↾ 𝐶 ) ) = ( 𝑦 ∈ ( 𝑅1 ‘ dom ( 𝐺 ↾ 𝐶 ) ) ↦ if ( dom ( 𝐺 ↾ 𝐶 ) = ∪ dom ( 𝐺 ↾ 𝐶 ) , ( ( suc ∪ ran ∪ ( 𝐺 “ 𝐶 ) ·o ( rank ‘ 𝑦 ) ) +o ( ( ( 𝐺 ↾ 𝐶 ) ‘ suc ( rank ‘ 𝑦 ) ) ‘ 𝑦 ) ) , ( 𝐹 ‘ ( ( ◡ OrdIso ( E , ran ( ( 𝐺 ↾ 𝐶 ) ‘ ∪ dom ( 𝐺 ↾ 𝐶 ) ) ) ∘ ( ( 𝐺 ↾ 𝐶 ) ‘ ∪ dom ( 𝐺 ↾ 𝐶 ) ) ) “ 𝑦 ) ) ) ) ) |
| 45 | onss | ⊢ ( 𝐶 ∈ On → 𝐶 ⊆ On ) | |
| 46 | 4 45 | syl | ⊢ ( 𝜑 → 𝐶 ⊆ On ) |
| 47 | fnssres | ⊢ ( ( 𝐺 Fn On ∧ 𝐶 ⊆ On ) → ( 𝐺 ↾ 𝐶 ) Fn 𝐶 ) | |
| 48 | 8 46 47 | sylancr | ⊢ ( 𝜑 → ( 𝐺 ↾ 𝐶 ) Fn 𝐶 ) |
| 49 | 48 | fndmd | ⊢ ( 𝜑 → dom ( 𝐺 ↾ 𝐶 ) = 𝐶 ) |
| 50 | 49 | fveq2d | ⊢ ( 𝜑 → ( 𝑅1 ‘ dom ( 𝐺 ↾ 𝐶 ) ) = ( 𝑅1 ‘ 𝐶 ) ) |
| 51 | 50 | mpteq1d | ⊢ ( 𝜑 → ( 𝑦 ∈ ( 𝑅1 ‘ dom ( 𝐺 ↾ 𝐶 ) ) ↦ if ( dom ( 𝐺 ↾ 𝐶 ) = ∪ dom ( 𝐺 ↾ 𝐶 ) , ( ( suc ∪ ran ∪ ( 𝐺 “ 𝐶 ) ·o ( rank ‘ 𝑦 ) ) +o ( ( ( 𝐺 ↾ 𝐶 ) ‘ suc ( rank ‘ 𝑦 ) ) ‘ 𝑦 ) ) , ( 𝐹 ‘ ( ( ◡ OrdIso ( E , ran ( ( 𝐺 ↾ 𝐶 ) ‘ ∪ dom ( 𝐺 ↾ 𝐶 ) ) ) ∘ ( ( 𝐺 ↾ 𝐶 ) ‘ ∪ dom ( 𝐺 ↾ 𝐶 ) ) ) “ 𝑦 ) ) ) ) = ( 𝑦 ∈ ( 𝑅1 ‘ 𝐶 ) ↦ if ( dom ( 𝐺 ↾ 𝐶 ) = ∪ dom ( 𝐺 ↾ 𝐶 ) , ( ( suc ∪ ran ∪ ( 𝐺 “ 𝐶 ) ·o ( rank ‘ 𝑦 ) ) +o ( ( ( 𝐺 ↾ 𝐶 ) ‘ suc ( rank ‘ 𝑦 ) ) ‘ 𝑦 ) ) , ( 𝐹 ‘ ( ( ◡ OrdIso ( E , ran ( ( 𝐺 ↾ 𝐶 ) ‘ ∪ dom ( 𝐺 ↾ 𝐶 ) ) ) ∘ ( ( 𝐺 ↾ 𝐶 ) ‘ ∪ dom ( 𝐺 ↾ 𝐶 ) ) ) “ 𝑦 ) ) ) ) ) |
| 52 | 49 | adantr | ⊢ ( ( 𝜑 ∧ 𝑦 ∈ ( 𝑅1 ‘ 𝐶 ) ) → dom ( 𝐺 ↾ 𝐶 ) = 𝐶 ) |
| 53 | 52 | unieqd | ⊢ ( ( 𝜑 ∧ 𝑦 ∈ ( 𝑅1 ‘ 𝐶 ) ) → ∪ dom ( 𝐺 ↾ 𝐶 ) = ∪ 𝐶 ) |
| 54 | 52 53 | eqeq12d | ⊢ ( ( 𝜑 ∧ 𝑦 ∈ ( 𝑅1 ‘ 𝐶 ) ) → ( dom ( 𝐺 ↾ 𝐶 ) = ∪ dom ( 𝐺 ↾ 𝐶 ) ↔ 𝐶 = ∪ 𝐶 ) ) |
| 55 | 54 | ifbid | ⊢ ( ( 𝜑 ∧ 𝑦 ∈ ( 𝑅1 ‘ 𝐶 ) ) → if ( dom ( 𝐺 ↾ 𝐶 ) = ∪ dom ( 𝐺 ↾ 𝐶 ) , ( ( suc ∪ ran ∪ ( 𝐺 “ 𝐶 ) ·o ( rank ‘ 𝑦 ) ) +o ( ( ( 𝐺 ↾ 𝐶 ) ‘ suc ( rank ‘ 𝑦 ) ) ‘ 𝑦 ) ) , ( 𝐹 ‘ ( ( ◡ OrdIso ( E , ran ( ( 𝐺 ↾ 𝐶 ) ‘ ∪ dom ( 𝐺 ↾ 𝐶 ) ) ) ∘ ( ( 𝐺 ↾ 𝐶 ) ‘ ∪ dom ( 𝐺 ↾ 𝐶 ) ) ) “ 𝑦 ) ) ) = if ( 𝐶 = ∪ 𝐶 , ( ( suc ∪ ran ∪ ( 𝐺 “ 𝐶 ) ·o ( rank ‘ 𝑦 ) ) +o ( ( ( 𝐺 ↾ 𝐶 ) ‘ suc ( rank ‘ 𝑦 ) ) ‘ 𝑦 ) ) , ( 𝐹 ‘ ( ( ◡ OrdIso ( E , ran ( ( 𝐺 ↾ 𝐶 ) ‘ ∪ dom ( 𝐺 ↾ 𝐶 ) ) ) ∘ ( ( 𝐺 ↾ 𝐶 ) ‘ ∪ dom ( 𝐺 ↾ 𝐶 ) ) ) “ 𝑦 ) ) ) ) |
| 56 | rankr1ai | ⊢ ( 𝑦 ∈ ( 𝑅1 ‘ 𝐶 ) → ( rank ‘ 𝑦 ) ∈ 𝐶 ) | |
| 57 | 56 | ad2antlr | ⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ( 𝑅1 ‘ 𝐶 ) ) ∧ 𝐶 = ∪ 𝐶 ) → ( rank ‘ 𝑦 ) ∈ 𝐶 ) |
| 58 | simpr | ⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ( 𝑅1 ‘ 𝐶 ) ) ∧ 𝐶 = ∪ 𝐶 ) → 𝐶 = ∪ 𝐶 ) | |
| 59 | 57 58 | eleqtrd | ⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ( 𝑅1 ‘ 𝐶 ) ) ∧ 𝐶 = ∪ 𝐶 ) → ( rank ‘ 𝑦 ) ∈ ∪ 𝐶 ) |
| 60 | eloni | ⊢ ( 𝐶 ∈ On → Ord 𝐶 ) | |
| 61 | ordsucuniel | ⊢ ( Ord 𝐶 → ( ( rank ‘ 𝑦 ) ∈ ∪ 𝐶 ↔ suc ( rank ‘ 𝑦 ) ∈ 𝐶 ) ) | |
| 62 | 4 60 61 | 3syl | ⊢ ( 𝜑 → ( ( rank ‘ 𝑦 ) ∈ ∪ 𝐶 ↔ suc ( rank ‘ 𝑦 ) ∈ 𝐶 ) ) |
| 63 | 62 | ad2antrr | ⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ( 𝑅1 ‘ 𝐶 ) ) ∧ 𝐶 = ∪ 𝐶 ) → ( ( rank ‘ 𝑦 ) ∈ ∪ 𝐶 ↔ suc ( rank ‘ 𝑦 ) ∈ 𝐶 ) ) |
| 64 | 59 63 | mpbid | ⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ( 𝑅1 ‘ 𝐶 ) ) ∧ 𝐶 = ∪ 𝐶 ) → suc ( rank ‘ 𝑦 ) ∈ 𝐶 ) |
| 65 | 64 | fvresd | ⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ( 𝑅1 ‘ 𝐶 ) ) ∧ 𝐶 = ∪ 𝐶 ) → ( ( 𝐺 ↾ 𝐶 ) ‘ suc ( rank ‘ 𝑦 ) ) = ( 𝐺 ‘ suc ( rank ‘ 𝑦 ) ) ) |
| 66 | 65 | fveq1d | ⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ( 𝑅1 ‘ 𝐶 ) ) ∧ 𝐶 = ∪ 𝐶 ) → ( ( ( 𝐺 ↾ 𝐶 ) ‘ suc ( rank ‘ 𝑦 ) ) ‘ 𝑦 ) = ( ( 𝐺 ‘ suc ( rank ‘ 𝑦 ) ) ‘ 𝑦 ) ) |
| 67 | 66 | oveq2d | ⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ( 𝑅1 ‘ 𝐶 ) ) ∧ 𝐶 = ∪ 𝐶 ) → ( ( suc ∪ ran ∪ ( 𝐺 “ 𝐶 ) ·o ( rank ‘ 𝑦 ) ) +o ( ( ( 𝐺 ↾ 𝐶 ) ‘ suc ( rank ‘ 𝑦 ) ) ‘ 𝑦 ) ) = ( ( suc ∪ ran ∪ ( 𝐺 “ 𝐶 ) ·o ( rank ‘ 𝑦 ) ) +o ( ( 𝐺 ‘ suc ( rank ‘ 𝑦 ) ) ‘ 𝑦 ) ) ) |
| 68 | 67 | ifeq1da | ⊢ ( ( 𝜑 ∧ 𝑦 ∈ ( 𝑅1 ‘ 𝐶 ) ) → if ( 𝐶 = ∪ 𝐶 , ( ( suc ∪ ran ∪ ( 𝐺 “ 𝐶 ) ·o ( rank ‘ 𝑦 ) ) +o ( ( ( 𝐺 ↾ 𝐶 ) ‘ suc ( rank ‘ 𝑦 ) ) ‘ 𝑦 ) ) , ( 𝐹 ‘ ( ( ◡ OrdIso ( E , ran ( ( 𝐺 ↾ 𝐶 ) ‘ ∪ dom ( 𝐺 ↾ 𝐶 ) ) ) ∘ ( ( 𝐺 ↾ 𝐶 ) ‘ ∪ dom ( 𝐺 ↾ 𝐶 ) ) ) “ 𝑦 ) ) ) = if ( 𝐶 = ∪ 𝐶 , ( ( suc ∪ ran ∪ ( 𝐺 “ 𝐶 ) ·o ( rank ‘ 𝑦 ) ) +o ( ( 𝐺 ‘ suc ( rank ‘ 𝑦 ) ) ‘ 𝑦 ) ) , ( 𝐹 ‘ ( ( ◡ OrdIso ( E , ran ( ( 𝐺 ↾ 𝐶 ) ‘ ∪ dom ( 𝐺 ↾ 𝐶 ) ) ) ∘ ( ( 𝐺 ↾ 𝐶 ) ‘ ∪ dom ( 𝐺 ↾ 𝐶 ) ) ) “ 𝑦 ) ) ) ) |
| 69 | 53 | adantr | ⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ( 𝑅1 ‘ 𝐶 ) ) ∧ ¬ 𝐶 = ∪ 𝐶 ) → ∪ dom ( 𝐺 ↾ 𝐶 ) = ∪ 𝐶 ) |
| 70 | 69 | fveq2d | ⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ( 𝑅1 ‘ 𝐶 ) ) ∧ ¬ 𝐶 = ∪ 𝐶 ) → ( ( 𝐺 ↾ 𝐶 ) ‘ ∪ dom ( 𝐺 ↾ 𝐶 ) ) = ( ( 𝐺 ↾ 𝐶 ) ‘ ∪ 𝐶 ) ) |
| 71 | 4 | ad2antrr | ⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ( 𝑅1 ‘ 𝐶 ) ) ∧ ¬ 𝐶 = ∪ 𝐶 ) → 𝐶 ∈ On ) |
| 72 | uniexg | ⊢ ( 𝐶 ∈ On → ∪ 𝐶 ∈ V ) | |
| 73 | sucidg | ⊢ ( ∪ 𝐶 ∈ V → ∪ 𝐶 ∈ suc ∪ 𝐶 ) | |
| 74 | 71 72 73 | 3syl | ⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ( 𝑅1 ‘ 𝐶 ) ) ∧ ¬ 𝐶 = ∪ 𝐶 ) → ∪ 𝐶 ∈ suc ∪ 𝐶 ) |
| 75 | 4 | adantr | ⊢ ( ( 𝜑 ∧ 𝑦 ∈ ( 𝑅1 ‘ 𝐶 ) ) → 𝐶 ∈ On ) |
| 76 | orduniorsuc | ⊢ ( Ord 𝐶 → ( 𝐶 = ∪ 𝐶 ∨ 𝐶 = suc ∪ 𝐶 ) ) | |
| 77 | 75 60 76 | 3syl | ⊢ ( ( 𝜑 ∧ 𝑦 ∈ ( 𝑅1 ‘ 𝐶 ) ) → ( 𝐶 = ∪ 𝐶 ∨ 𝐶 = suc ∪ 𝐶 ) ) |
| 78 | 77 | orcanai | ⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ( 𝑅1 ‘ 𝐶 ) ) ∧ ¬ 𝐶 = ∪ 𝐶 ) → 𝐶 = suc ∪ 𝐶 ) |
| 79 | 74 78 | eleqtrrd | ⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ( 𝑅1 ‘ 𝐶 ) ) ∧ ¬ 𝐶 = ∪ 𝐶 ) → ∪ 𝐶 ∈ 𝐶 ) |
| 80 | 79 | fvresd | ⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ( 𝑅1 ‘ 𝐶 ) ) ∧ ¬ 𝐶 = ∪ 𝐶 ) → ( ( 𝐺 ↾ 𝐶 ) ‘ ∪ 𝐶 ) = ( 𝐺 ‘ ∪ 𝐶 ) ) |
| 81 | 70 80 | eqtrd | ⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ( 𝑅1 ‘ 𝐶 ) ) ∧ ¬ 𝐶 = ∪ 𝐶 ) → ( ( 𝐺 ↾ 𝐶 ) ‘ ∪ dom ( 𝐺 ↾ 𝐶 ) ) = ( 𝐺 ‘ ∪ 𝐶 ) ) |
| 82 | 81 | rneqd | ⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ( 𝑅1 ‘ 𝐶 ) ) ∧ ¬ 𝐶 = ∪ 𝐶 ) → ran ( ( 𝐺 ↾ 𝐶 ) ‘ ∪ dom ( 𝐺 ↾ 𝐶 ) ) = ran ( 𝐺 ‘ ∪ 𝐶 ) ) |
| 83 | oieq2 | ⊢ ( ran ( ( 𝐺 ↾ 𝐶 ) ‘ ∪ dom ( 𝐺 ↾ 𝐶 ) ) = ran ( 𝐺 ‘ ∪ 𝐶 ) → OrdIso ( E , ran ( ( 𝐺 ↾ 𝐶 ) ‘ ∪ dom ( 𝐺 ↾ 𝐶 ) ) ) = OrdIso ( E , ran ( 𝐺 ‘ ∪ 𝐶 ) ) ) | |
| 84 | 82 83 | syl | ⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ( 𝑅1 ‘ 𝐶 ) ) ∧ ¬ 𝐶 = ∪ 𝐶 ) → OrdIso ( E , ran ( ( 𝐺 ↾ 𝐶 ) ‘ ∪ dom ( 𝐺 ↾ 𝐶 ) ) ) = OrdIso ( E , ran ( 𝐺 ‘ ∪ 𝐶 ) ) ) |
| 85 | 84 | cnveqd | ⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ( 𝑅1 ‘ 𝐶 ) ) ∧ ¬ 𝐶 = ∪ 𝐶 ) → ◡ OrdIso ( E , ran ( ( 𝐺 ↾ 𝐶 ) ‘ ∪ dom ( 𝐺 ↾ 𝐶 ) ) ) = ◡ OrdIso ( E , ran ( 𝐺 ‘ ∪ 𝐶 ) ) ) |
| 86 | 85 81 | coeq12d | ⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ( 𝑅1 ‘ 𝐶 ) ) ∧ ¬ 𝐶 = ∪ 𝐶 ) → ( ◡ OrdIso ( E , ran ( ( 𝐺 ↾ 𝐶 ) ‘ ∪ dom ( 𝐺 ↾ 𝐶 ) ) ) ∘ ( ( 𝐺 ↾ 𝐶 ) ‘ ∪ dom ( 𝐺 ↾ 𝐶 ) ) ) = ( ◡ OrdIso ( E , ran ( 𝐺 ‘ ∪ 𝐶 ) ) ∘ ( 𝐺 ‘ ∪ 𝐶 ) ) ) |
| 87 | 86 5 | eqtr4di | ⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ( 𝑅1 ‘ 𝐶 ) ) ∧ ¬ 𝐶 = ∪ 𝐶 ) → ( ◡ OrdIso ( E , ran ( ( 𝐺 ↾ 𝐶 ) ‘ ∪ dom ( 𝐺 ↾ 𝐶 ) ) ) ∘ ( ( 𝐺 ↾ 𝐶 ) ‘ ∪ dom ( 𝐺 ↾ 𝐶 ) ) ) = 𝐻 ) |
| 88 | 87 | imaeq1d | ⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ( 𝑅1 ‘ 𝐶 ) ) ∧ ¬ 𝐶 = ∪ 𝐶 ) → ( ( ◡ OrdIso ( E , ran ( ( 𝐺 ↾ 𝐶 ) ‘ ∪ dom ( 𝐺 ↾ 𝐶 ) ) ) ∘ ( ( 𝐺 ↾ 𝐶 ) ‘ ∪ dom ( 𝐺 ↾ 𝐶 ) ) ) “ 𝑦 ) = ( 𝐻 “ 𝑦 ) ) |
| 89 | 88 | fveq2d | ⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ( 𝑅1 ‘ 𝐶 ) ) ∧ ¬ 𝐶 = ∪ 𝐶 ) → ( 𝐹 ‘ ( ( ◡ OrdIso ( E , ran ( ( 𝐺 ↾ 𝐶 ) ‘ ∪ dom ( 𝐺 ↾ 𝐶 ) ) ) ∘ ( ( 𝐺 ↾ 𝐶 ) ‘ ∪ dom ( 𝐺 ↾ 𝐶 ) ) ) “ 𝑦 ) ) = ( 𝐹 ‘ ( 𝐻 “ 𝑦 ) ) ) |
| 90 | 89 | ifeq2da | ⊢ ( ( 𝜑 ∧ 𝑦 ∈ ( 𝑅1 ‘ 𝐶 ) ) → if ( 𝐶 = ∪ 𝐶 , ( ( suc ∪ ran ∪ ( 𝐺 “ 𝐶 ) ·o ( rank ‘ 𝑦 ) ) +o ( ( 𝐺 ‘ suc ( rank ‘ 𝑦 ) ) ‘ 𝑦 ) ) , ( 𝐹 ‘ ( ( ◡ OrdIso ( E , ran ( ( 𝐺 ↾ 𝐶 ) ‘ ∪ dom ( 𝐺 ↾ 𝐶 ) ) ) ∘ ( ( 𝐺 ↾ 𝐶 ) ‘ ∪ dom ( 𝐺 ↾ 𝐶 ) ) ) “ 𝑦 ) ) ) = if ( 𝐶 = ∪ 𝐶 , ( ( suc ∪ ran ∪ ( 𝐺 “ 𝐶 ) ·o ( rank ‘ 𝑦 ) ) +o ( ( 𝐺 ‘ suc ( rank ‘ 𝑦 ) ) ‘ 𝑦 ) ) , ( 𝐹 ‘ ( 𝐻 “ 𝑦 ) ) ) ) |
| 91 | 55 68 90 | 3eqtrd | ⊢ ( ( 𝜑 ∧ 𝑦 ∈ ( 𝑅1 ‘ 𝐶 ) ) → if ( dom ( 𝐺 ↾ 𝐶 ) = ∪ dom ( 𝐺 ↾ 𝐶 ) , ( ( suc ∪ ran ∪ ( 𝐺 “ 𝐶 ) ·o ( rank ‘ 𝑦 ) ) +o ( ( ( 𝐺 ↾ 𝐶 ) ‘ suc ( rank ‘ 𝑦 ) ) ‘ 𝑦 ) ) , ( 𝐹 ‘ ( ( ◡ OrdIso ( E , ran ( ( 𝐺 ↾ 𝐶 ) ‘ ∪ dom ( 𝐺 ↾ 𝐶 ) ) ) ∘ ( ( 𝐺 ↾ 𝐶 ) ‘ ∪ dom ( 𝐺 ↾ 𝐶 ) ) ) “ 𝑦 ) ) ) = if ( 𝐶 = ∪ 𝐶 , ( ( suc ∪ ran ∪ ( 𝐺 “ 𝐶 ) ·o ( rank ‘ 𝑦 ) ) +o ( ( 𝐺 ‘ suc ( rank ‘ 𝑦 ) ) ‘ 𝑦 ) ) , ( 𝐹 ‘ ( 𝐻 “ 𝑦 ) ) ) ) |
| 92 | 91 | mpteq2dva | ⊢ ( 𝜑 → ( 𝑦 ∈ ( 𝑅1 ‘ 𝐶 ) ↦ if ( dom ( 𝐺 ↾ 𝐶 ) = ∪ dom ( 𝐺 ↾ 𝐶 ) , ( ( suc ∪ ran ∪ ( 𝐺 “ 𝐶 ) ·o ( rank ‘ 𝑦 ) ) +o ( ( ( 𝐺 ↾ 𝐶 ) ‘ suc ( rank ‘ 𝑦 ) ) ‘ 𝑦 ) ) , ( 𝐹 ‘ ( ( ◡ OrdIso ( E , ran ( ( 𝐺 ↾ 𝐶 ) ‘ ∪ dom ( 𝐺 ↾ 𝐶 ) ) ) ∘ ( ( 𝐺 ↾ 𝐶 ) ‘ ∪ dom ( 𝐺 ↾ 𝐶 ) ) ) “ 𝑦 ) ) ) ) = ( 𝑦 ∈ ( 𝑅1 ‘ 𝐶 ) ↦ if ( 𝐶 = ∪ 𝐶 , ( ( suc ∪ ran ∪ ( 𝐺 “ 𝐶 ) ·o ( rank ‘ 𝑦 ) ) +o ( ( 𝐺 ‘ suc ( rank ‘ 𝑦 ) ) ‘ 𝑦 ) ) , ( 𝐹 ‘ ( 𝐻 “ 𝑦 ) ) ) ) ) |
| 93 | 51 92 | eqtrd | ⊢ ( 𝜑 → ( 𝑦 ∈ ( 𝑅1 ‘ dom ( 𝐺 ↾ 𝐶 ) ) ↦ if ( dom ( 𝐺 ↾ 𝐶 ) = ∪ dom ( 𝐺 ↾ 𝐶 ) , ( ( suc ∪ ran ∪ ( 𝐺 “ 𝐶 ) ·o ( rank ‘ 𝑦 ) ) +o ( ( ( 𝐺 ↾ 𝐶 ) ‘ suc ( rank ‘ 𝑦 ) ) ‘ 𝑦 ) ) , ( 𝐹 ‘ ( ( ◡ OrdIso ( E , ran ( ( 𝐺 ↾ 𝐶 ) ‘ ∪ dom ( 𝐺 ↾ 𝐶 ) ) ) ∘ ( ( 𝐺 ↾ 𝐶 ) ‘ ∪ dom ( 𝐺 ↾ 𝐶 ) ) ) “ 𝑦 ) ) ) ) = ( 𝑦 ∈ ( 𝑅1 ‘ 𝐶 ) ↦ if ( 𝐶 = ∪ 𝐶 , ( ( suc ∪ ran ∪ ( 𝐺 “ 𝐶 ) ·o ( rank ‘ 𝑦 ) ) +o ( ( 𝐺 ‘ suc ( rank ‘ 𝑦 ) ) ‘ 𝑦 ) ) , ( 𝐹 ‘ ( 𝐻 “ 𝑦 ) ) ) ) ) |
| 94 | 7 44 93 | 3eqtrd | ⊢ ( 𝜑 → ( 𝐺 ‘ 𝐶 ) = ( 𝑦 ∈ ( 𝑅1 ‘ 𝐶 ) ↦ if ( 𝐶 = ∪ 𝐶 , ( ( suc ∪ ran ∪ ( 𝐺 “ 𝐶 ) ·o ( rank ‘ 𝑦 ) ) +o ( ( 𝐺 ‘ suc ( rank ‘ 𝑦 ) ) ‘ 𝑦 ) ) , ( 𝐹 ‘ ( 𝐻 “ 𝑦 ) ) ) ) ) |