This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Given an element A of the union of an ordinal B , suc A is an element of B itself. (Contributed by Scott Fenton, 28-Mar-2012) (Proof shortened by Mario Carneiro, 29-May-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | ordsucuniel | ⊢ ( Ord 𝐵 → ( 𝐴 ∈ ∪ 𝐵 ↔ suc 𝐴 ∈ 𝐵 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | orduni | ⊢ ( Ord 𝐵 → Ord ∪ 𝐵 ) | |
| 2 | ordelord | ⊢ ( ( Ord ∪ 𝐵 ∧ 𝐴 ∈ ∪ 𝐵 ) → Ord 𝐴 ) | |
| 3 | 2 | ex | ⊢ ( Ord ∪ 𝐵 → ( 𝐴 ∈ ∪ 𝐵 → Ord 𝐴 ) ) |
| 4 | 1 3 | syl | ⊢ ( Ord 𝐵 → ( 𝐴 ∈ ∪ 𝐵 → Ord 𝐴 ) ) |
| 5 | ordelord | ⊢ ( ( Ord 𝐵 ∧ suc 𝐴 ∈ 𝐵 ) → Ord suc 𝐴 ) | |
| 6 | ordsuc | ⊢ ( Ord 𝐴 ↔ Ord suc 𝐴 ) | |
| 7 | 5 6 | sylibr | ⊢ ( ( Ord 𝐵 ∧ suc 𝐴 ∈ 𝐵 ) → Ord 𝐴 ) |
| 8 | 7 | ex | ⊢ ( Ord 𝐵 → ( suc 𝐴 ∈ 𝐵 → Ord 𝐴 ) ) |
| 9 | ordsson | ⊢ ( Ord 𝐵 → 𝐵 ⊆ On ) | |
| 10 | ordunisssuc | ⊢ ( ( 𝐵 ⊆ On ∧ Ord 𝐴 ) → ( ∪ 𝐵 ⊆ 𝐴 ↔ 𝐵 ⊆ suc 𝐴 ) ) | |
| 11 | 9 10 | sylan | ⊢ ( ( Ord 𝐵 ∧ Ord 𝐴 ) → ( ∪ 𝐵 ⊆ 𝐴 ↔ 𝐵 ⊆ suc 𝐴 ) ) |
| 12 | ordtri1 | ⊢ ( ( Ord ∪ 𝐵 ∧ Ord 𝐴 ) → ( ∪ 𝐵 ⊆ 𝐴 ↔ ¬ 𝐴 ∈ ∪ 𝐵 ) ) | |
| 13 | 1 12 | sylan | ⊢ ( ( Ord 𝐵 ∧ Ord 𝐴 ) → ( ∪ 𝐵 ⊆ 𝐴 ↔ ¬ 𝐴 ∈ ∪ 𝐵 ) ) |
| 14 | ordtri1 | ⊢ ( ( Ord 𝐵 ∧ Ord suc 𝐴 ) → ( 𝐵 ⊆ suc 𝐴 ↔ ¬ suc 𝐴 ∈ 𝐵 ) ) | |
| 15 | 6 14 | sylan2b | ⊢ ( ( Ord 𝐵 ∧ Ord 𝐴 ) → ( 𝐵 ⊆ suc 𝐴 ↔ ¬ suc 𝐴 ∈ 𝐵 ) ) |
| 16 | 11 13 15 | 3bitr3d | ⊢ ( ( Ord 𝐵 ∧ Ord 𝐴 ) → ( ¬ 𝐴 ∈ ∪ 𝐵 ↔ ¬ suc 𝐴 ∈ 𝐵 ) ) |
| 17 | 16 | con4bid | ⊢ ( ( Ord 𝐵 ∧ Ord 𝐴 ) → ( 𝐴 ∈ ∪ 𝐵 ↔ suc 𝐴 ∈ 𝐵 ) ) |
| 18 | 17 | ex | ⊢ ( Ord 𝐵 → ( Ord 𝐴 → ( 𝐴 ∈ ∪ 𝐵 ↔ suc 𝐴 ∈ 𝐵 ) ) ) |
| 19 | 4 8 18 | pm5.21ndd | ⊢ ( Ord 𝐵 → ( 𝐴 ∈ ∪ 𝐵 ↔ suc 𝐴 ∈ 𝐵 ) ) |