This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: One direction of rankr1a . (Contributed by Mario Carneiro, 28-May-2013) (Revised by Mario Carneiro, 17-Nov-2014)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | rankr1ai | ⊢ ( 𝐴 ∈ ( 𝑅1 ‘ 𝐵 ) → ( rank ‘ 𝐴 ) ∈ 𝐵 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elfvdm | ⊢ ( 𝐴 ∈ ( 𝑅1 ‘ 𝐵 ) → 𝐵 ∈ dom 𝑅1 ) | |
| 2 | r1val1 | ⊢ ( 𝐵 ∈ dom 𝑅1 → ( 𝑅1 ‘ 𝐵 ) = ∪ 𝑥 ∈ 𝐵 𝒫 ( 𝑅1 ‘ 𝑥 ) ) | |
| 3 | 2 | eleq2d | ⊢ ( 𝐵 ∈ dom 𝑅1 → ( 𝐴 ∈ ( 𝑅1 ‘ 𝐵 ) ↔ 𝐴 ∈ ∪ 𝑥 ∈ 𝐵 𝒫 ( 𝑅1 ‘ 𝑥 ) ) ) |
| 4 | eliun | ⊢ ( 𝐴 ∈ ∪ 𝑥 ∈ 𝐵 𝒫 ( 𝑅1 ‘ 𝑥 ) ↔ ∃ 𝑥 ∈ 𝐵 𝐴 ∈ 𝒫 ( 𝑅1 ‘ 𝑥 ) ) | |
| 5 | 3 4 | bitrdi | ⊢ ( 𝐵 ∈ dom 𝑅1 → ( 𝐴 ∈ ( 𝑅1 ‘ 𝐵 ) ↔ ∃ 𝑥 ∈ 𝐵 𝐴 ∈ 𝒫 ( 𝑅1 ‘ 𝑥 ) ) ) |
| 6 | r1funlim | ⊢ ( Fun 𝑅1 ∧ Lim dom 𝑅1 ) | |
| 7 | 6 | simpri | ⊢ Lim dom 𝑅1 |
| 8 | limord | ⊢ ( Lim dom 𝑅1 → Ord dom 𝑅1 ) | |
| 9 | 7 8 | ax-mp | ⊢ Ord dom 𝑅1 |
| 10 | ordtr1 | ⊢ ( Ord dom 𝑅1 → ( ( 𝑥 ∈ 𝐵 ∧ 𝐵 ∈ dom 𝑅1 ) → 𝑥 ∈ dom 𝑅1 ) ) | |
| 11 | 9 10 | ax-mp | ⊢ ( ( 𝑥 ∈ 𝐵 ∧ 𝐵 ∈ dom 𝑅1 ) → 𝑥 ∈ dom 𝑅1 ) |
| 12 | 11 | ancoms | ⊢ ( ( 𝐵 ∈ dom 𝑅1 ∧ 𝑥 ∈ 𝐵 ) → 𝑥 ∈ dom 𝑅1 ) |
| 13 | r1sucg | ⊢ ( 𝑥 ∈ dom 𝑅1 → ( 𝑅1 ‘ suc 𝑥 ) = 𝒫 ( 𝑅1 ‘ 𝑥 ) ) | |
| 14 | 13 | eleq2d | ⊢ ( 𝑥 ∈ dom 𝑅1 → ( 𝐴 ∈ ( 𝑅1 ‘ suc 𝑥 ) ↔ 𝐴 ∈ 𝒫 ( 𝑅1 ‘ 𝑥 ) ) ) |
| 15 | 12 14 | syl | ⊢ ( ( 𝐵 ∈ dom 𝑅1 ∧ 𝑥 ∈ 𝐵 ) → ( 𝐴 ∈ ( 𝑅1 ‘ suc 𝑥 ) ↔ 𝐴 ∈ 𝒫 ( 𝑅1 ‘ 𝑥 ) ) ) |
| 16 | ordsson | ⊢ ( Ord dom 𝑅1 → dom 𝑅1 ⊆ On ) | |
| 17 | 9 16 | ax-mp | ⊢ dom 𝑅1 ⊆ On |
| 18 | 17 12 | sselid | ⊢ ( ( 𝐵 ∈ dom 𝑅1 ∧ 𝑥 ∈ 𝐵 ) → 𝑥 ∈ On ) |
| 19 | rabid | ⊢ ( 𝑥 ∈ { 𝑥 ∈ On ∣ 𝐴 ∈ ( 𝑅1 ‘ suc 𝑥 ) } ↔ ( 𝑥 ∈ On ∧ 𝐴 ∈ ( 𝑅1 ‘ suc 𝑥 ) ) ) | |
| 20 | intss1 | ⊢ ( 𝑥 ∈ { 𝑥 ∈ On ∣ 𝐴 ∈ ( 𝑅1 ‘ suc 𝑥 ) } → ∩ { 𝑥 ∈ On ∣ 𝐴 ∈ ( 𝑅1 ‘ suc 𝑥 ) } ⊆ 𝑥 ) | |
| 21 | 19 20 | sylbir | ⊢ ( ( 𝑥 ∈ On ∧ 𝐴 ∈ ( 𝑅1 ‘ suc 𝑥 ) ) → ∩ { 𝑥 ∈ On ∣ 𝐴 ∈ ( 𝑅1 ‘ suc 𝑥 ) } ⊆ 𝑥 ) |
| 22 | 18 21 | sylan | ⊢ ( ( ( 𝐵 ∈ dom 𝑅1 ∧ 𝑥 ∈ 𝐵 ) ∧ 𝐴 ∈ ( 𝑅1 ‘ suc 𝑥 ) ) → ∩ { 𝑥 ∈ On ∣ 𝐴 ∈ ( 𝑅1 ‘ suc 𝑥 ) } ⊆ 𝑥 ) |
| 23 | 22 | ex | ⊢ ( ( 𝐵 ∈ dom 𝑅1 ∧ 𝑥 ∈ 𝐵 ) → ( 𝐴 ∈ ( 𝑅1 ‘ suc 𝑥 ) → ∩ { 𝑥 ∈ On ∣ 𝐴 ∈ ( 𝑅1 ‘ suc 𝑥 ) } ⊆ 𝑥 ) ) |
| 24 | 15 23 | sylbird | ⊢ ( ( 𝐵 ∈ dom 𝑅1 ∧ 𝑥 ∈ 𝐵 ) → ( 𝐴 ∈ 𝒫 ( 𝑅1 ‘ 𝑥 ) → ∩ { 𝑥 ∈ On ∣ 𝐴 ∈ ( 𝑅1 ‘ suc 𝑥 ) } ⊆ 𝑥 ) ) |
| 25 | 24 | reximdva | ⊢ ( 𝐵 ∈ dom 𝑅1 → ( ∃ 𝑥 ∈ 𝐵 𝐴 ∈ 𝒫 ( 𝑅1 ‘ 𝑥 ) → ∃ 𝑥 ∈ 𝐵 ∩ { 𝑥 ∈ On ∣ 𝐴 ∈ ( 𝑅1 ‘ suc 𝑥 ) } ⊆ 𝑥 ) ) |
| 26 | 5 25 | sylbid | ⊢ ( 𝐵 ∈ dom 𝑅1 → ( 𝐴 ∈ ( 𝑅1 ‘ 𝐵 ) → ∃ 𝑥 ∈ 𝐵 ∩ { 𝑥 ∈ On ∣ 𝐴 ∈ ( 𝑅1 ‘ suc 𝑥 ) } ⊆ 𝑥 ) ) |
| 27 | 1 26 | mpcom | ⊢ ( 𝐴 ∈ ( 𝑅1 ‘ 𝐵 ) → ∃ 𝑥 ∈ 𝐵 ∩ { 𝑥 ∈ On ∣ 𝐴 ∈ ( 𝑅1 ‘ suc 𝑥 ) } ⊆ 𝑥 ) |
| 28 | r1elwf | ⊢ ( 𝐴 ∈ ( 𝑅1 ‘ 𝐵 ) → 𝐴 ∈ ∪ ( 𝑅1 “ On ) ) | |
| 29 | rankvalb | ⊢ ( 𝐴 ∈ ∪ ( 𝑅1 “ On ) → ( rank ‘ 𝐴 ) = ∩ { 𝑥 ∈ On ∣ 𝐴 ∈ ( 𝑅1 ‘ suc 𝑥 ) } ) | |
| 30 | 28 29 | syl | ⊢ ( 𝐴 ∈ ( 𝑅1 ‘ 𝐵 ) → ( rank ‘ 𝐴 ) = ∩ { 𝑥 ∈ On ∣ 𝐴 ∈ ( 𝑅1 ‘ suc 𝑥 ) } ) |
| 31 | 30 | sseq1d | ⊢ ( 𝐴 ∈ ( 𝑅1 ‘ 𝐵 ) → ( ( rank ‘ 𝐴 ) ⊆ 𝑥 ↔ ∩ { 𝑥 ∈ On ∣ 𝐴 ∈ ( 𝑅1 ‘ suc 𝑥 ) } ⊆ 𝑥 ) ) |
| 32 | 31 | adantr | ⊢ ( ( 𝐴 ∈ ( 𝑅1 ‘ 𝐵 ) ∧ 𝑥 ∈ 𝐵 ) → ( ( rank ‘ 𝐴 ) ⊆ 𝑥 ↔ ∩ { 𝑥 ∈ On ∣ 𝐴 ∈ ( 𝑅1 ‘ suc 𝑥 ) } ⊆ 𝑥 ) ) |
| 33 | rankon | ⊢ ( rank ‘ 𝐴 ) ∈ On | |
| 34 | 17 1 | sselid | ⊢ ( 𝐴 ∈ ( 𝑅1 ‘ 𝐵 ) → 𝐵 ∈ On ) |
| 35 | ontr2 | ⊢ ( ( ( rank ‘ 𝐴 ) ∈ On ∧ 𝐵 ∈ On ) → ( ( ( rank ‘ 𝐴 ) ⊆ 𝑥 ∧ 𝑥 ∈ 𝐵 ) → ( rank ‘ 𝐴 ) ∈ 𝐵 ) ) | |
| 36 | 33 34 35 | sylancr | ⊢ ( 𝐴 ∈ ( 𝑅1 ‘ 𝐵 ) → ( ( ( rank ‘ 𝐴 ) ⊆ 𝑥 ∧ 𝑥 ∈ 𝐵 ) → ( rank ‘ 𝐴 ) ∈ 𝐵 ) ) |
| 37 | 36 | expcomd | ⊢ ( 𝐴 ∈ ( 𝑅1 ‘ 𝐵 ) → ( 𝑥 ∈ 𝐵 → ( ( rank ‘ 𝐴 ) ⊆ 𝑥 → ( rank ‘ 𝐴 ) ∈ 𝐵 ) ) ) |
| 38 | 37 | imp | ⊢ ( ( 𝐴 ∈ ( 𝑅1 ‘ 𝐵 ) ∧ 𝑥 ∈ 𝐵 ) → ( ( rank ‘ 𝐴 ) ⊆ 𝑥 → ( rank ‘ 𝐴 ) ∈ 𝐵 ) ) |
| 39 | 32 38 | sylbird | ⊢ ( ( 𝐴 ∈ ( 𝑅1 ‘ 𝐵 ) ∧ 𝑥 ∈ 𝐵 ) → ( ∩ { 𝑥 ∈ On ∣ 𝐴 ∈ ( 𝑅1 ‘ suc 𝑥 ) } ⊆ 𝑥 → ( rank ‘ 𝐴 ) ∈ 𝐵 ) ) |
| 40 | 39 | rexlimdva | ⊢ ( 𝐴 ∈ ( 𝑅1 ‘ 𝐵 ) → ( ∃ 𝑥 ∈ 𝐵 ∩ { 𝑥 ∈ On ∣ 𝐴 ∈ ( 𝑅1 ‘ suc 𝑥 ) } ⊆ 𝑥 → ( rank ‘ 𝐴 ) ∈ 𝐵 ) ) |
| 41 | 27 40 | mpd | ⊢ ( 𝐴 ∈ ( 𝑅1 ‘ 𝐵 ) → ( rank ‘ 𝐴 ) ∈ 𝐵 ) |