This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Identity law for the rank function. (Contributed by NM, 3-Oct-2003) (Revised by Mario Carneiro, 22-Mar-2013)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | rankidb | ⊢ ( 𝐴 ∈ ∪ ( 𝑅1 “ On ) → 𝐴 ∈ ( 𝑅1 ‘ suc ( rank ‘ 𝐴 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rankwflemb | ⊢ ( 𝐴 ∈ ∪ ( 𝑅1 “ On ) ↔ ∃ 𝑥 ∈ On 𝐴 ∈ ( 𝑅1 ‘ suc 𝑥 ) ) | |
| 2 | nfcv | ⊢ Ⅎ 𝑥 𝑅1 | |
| 3 | nfrab1 | ⊢ Ⅎ 𝑥 { 𝑥 ∈ On ∣ 𝐴 ∈ ( 𝑅1 ‘ suc 𝑥 ) } | |
| 4 | 3 | nfint | ⊢ Ⅎ 𝑥 ∩ { 𝑥 ∈ On ∣ 𝐴 ∈ ( 𝑅1 ‘ suc 𝑥 ) } |
| 5 | 4 | nfsuc | ⊢ Ⅎ 𝑥 suc ∩ { 𝑥 ∈ On ∣ 𝐴 ∈ ( 𝑅1 ‘ suc 𝑥 ) } |
| 6 | 2 5 | nffv | ⊢ Ⅎ 𝑥 ( 𝑅1 ‘ suc ∩ { 𝑥 ∈ On ∣ 𝐴 ∈ ( 𝑅1 ‘ suc 𝑥 ) } ) |
| 7 | 6 | nfel2 | ⊢ Ⅎ 𝑥 𝐴 ∈ ( 𝑅1 ‘ suc ∩ { 𝑥 ∈ On ∣ 𝐴 ∈ ( 𝑅1 ‘ suc 𝑥 ) } ) |
| 8 | suceq | ⊢ ( 𝑥 = ∩ { 𝑥 ∈ On ∣ 𝐴 ∈ ( 𝑅1 ‘ suc 𝑥 ) } → suc 𝑥 = suc ∩ { 𝑥 ∈ On ∣ 𝐴 ∈ ( 𝑅1 ‘ suc 𝑥 ) } ) | |
| 9 | 8 | fveq2d | ⊢ ( 𝑥 = ∩ { 𝑥 ∈ On ∣ 𝐴 ∈ ( 𝑅1 ‘ suc 𝑥 ) } → ( 𝑅1 ‘ suc 𝑥 ) = ( 𝑅1 ‘ suc ∩ { 𝑥 ∈ On ∣ 𝐴 ∈ ( 𝑅1 ‘ suc 𝑥 ) } ) ) |
| 10 | 9 | eleq2d | ⊢ ( 𝑥 = ∩ { 𝑥 ∈ On ∣ 𝐴 ∈ ( 𝑅1 ‘ suc 𝑥 ) } → ( 𝐴 ∈ ( 𝑅1 ‘ suc 𝑥 ) ↔ 𝐴 ∈ ( 𝑅1 ‘ suc ∩ { 𝑥 ∈ On ∣ 𝐴 ∈ ( 𝑅1 ‘ suc 𝑥 ) } ) ) ) |
| 11 | 7 10 | onminsb | ⊢ ( ∃ 𝑥 ∈ On 𝐴 ∈ ( 𝑅1 ‘ suc 𝑥 ) → 𝐴 ∈ ( 𝑅1 ‘ suc ∩ { 𝑥 ∈ On ∣ 𝐴 ∈ ( 𝑅1 ‘ suc 𝑥 ) } ) ) |
| 12 | 1 11 | sylbi | ⊢ ( 𝐴 ∈ ∪ ( 𝑅1 “ On ) → 𝐴 ∈ ( 𝑅1 ‘ suc ∩ { 𝑥 ∈ On ∣ 𝐴 ∈ ( 𝑅1 ‘ suc 𝑥 ) } ) ) |
| 13 | rankvalb | ⊢ ( 𝐴 ∈ ∪ ( 𝑅1 “ On ) → ( rank ‘ 𝐴 ) = ∩ { 𝑥 ∈ On ∣ 𝐴 ∈ ( 𝑅1 ‘ suc 𝑥 ) } ) | |
| 14 | suceq | ⊢ ( ( rank ‘ 𝐴 ) = ∩ { 𝑥 ∈ On ∣ 𝐴 ∈ ( 𝑅1 ‘ suc 𝑥 ) } → suc ( rank ‘ 𝐴 ) = suc ∩ { 𝑥 ∈ On ∣ 𝐴 ∈ ( 𝑅1 ‘ suc 𝑥 ) } ) | |
| 15 | 13 14 | syl | ⊢ ( 𝐴 ∈ ∪ ( 𝑅1 “ On ) → suc ( rank ‘ 𝐴 ) = suc ∩ { 𝑥 ∈ On ∣ 𝐴 ∈ ( 𝑅1 ‘ suc 𝑥 ) } ) |
| 16 | 15 | fveq2d | ⊢ ( 𝐴 ∈ ∪ ( 𝑅1 “ On ) → ( 𝑅1 ‘ suc ( rank ‘ 𝐴 ) ) = ( 𝑅1 ‘ suc ∩ { 𝑥 ∈ On ∣ 𝐴 ∈ ( 𝑅1 ‘ suc 𝑥 ) } ) ) |
| 17 | 12 16 | eleqtrrd | ⊢ ( 𝐴 ∈ ∪ ( 𝑅1 “ On ) → 𝐴 ∈ ( 𝑅1 ‘ suc ( rank ‘ 𝐴 ) ) ) |