This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Composition of one-to-one functions when the codomain of the first matches the domain of the second. Exercise 30 of TakeutiZaring p. 25. (Contributed by NM, 28-May-1998) (Proof shortened by AV, 20-Sep-2024)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | f1co | ⊢ ( ( 𝐹 : 𝐵 –1-1→ 𝐶 ∧ 𝐺 : 𝐴 –1-1→ 𝐵 ) → ( 𝐹 ∘ 𝐺 ) : 𝐴 –1-1→ 𝐶 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | f1cof1 | ⊢ ( ( 𝐹 : 𝐵 –1-1→ 𝐶 ∧ 𝐺 : 𝐴 –1-1→ 𝐵 ) → ( 𝐹 ∘ 𝐺 ) : ( ◡ 𝐺 “ 𝐵 ) –1-1→ 𝐶 ) | |
| 2 | f1f | ⊢ ( 𝐺 : 𝐴 –1-1→ 𝐵 → 𝐺 : 𝐴 ⟶ 𝐵 ) | |
| 3 | fimacnv | ⊢ ( 𝐺 : 𝐴 ⟶ 𝐵 → ( ◡ 𝐺 “ 𝐵 ) = 𝐴 ) | |
| 4 | 2 3 | syl | ⊢ ( 𝐺 : 𝐴 –1-1→ 𝐵 → ( ◡ 𝐺 “ 𝐵 ) = 𝐴 ) |
| 5 | 4 | adantl | ⊢ ( ( 𝐹 : 𝐵 –1-1→ 𝐶 ∧ 𝐺 : 𝐴 –1-1→ 𝐵 ) → ( ◡ 𝐺 “ 𝐵 ) = 𝐴 ) |
| 6 | 5 | eqcomd | ⊢ ( ( 𝐹 : 𝐵 –1-1→ 𝐶 ∧ 𝐺 : 𝐴 –1-1→ 𝐵 ) → 𝐴 = ( ◡ 𝐺 “ 𝐵 ) ) |
| 7 | f1eq2 | ⊢ ( 𝐴 = ( ◡ 𝐺 “ 𝐵 ) → ( ( 𝐹 ∘ 𝐺 ) : 𝐴 –1-1→ 𝐶 ↔ ( 𝐹 ∘ 𝐺 ) : ( ◡ 𝐺 “ 𝐵 ) –1-1→ 𝐶 ) ) | |
| 8 | 6 7 | syl | ⊢ ( ( 𝐹 : 𝐵 –1-1→ 𝐶 ∧ 𝐺 : 𝐴 –1-1→ 𝐵 ) → ( ( 𝐹 ∘ 𝐺 ) : 𝐴 –1-1→ 𝐶 ↔ ( 𝐹 ∘ 𝐺 ) : ( ◡ 𝐺 “ 𝐵 ) –1-1→ 𝐶 ) ) |
| 9 | 1 8 | mpbird | ⊢ ( ( 𝐹 : 𝐵 –1-1→ 𝐶 ∧ 𝐺 : 𝐴 –1-1→ 𝐵 ) → ( 𝐹 ∘ 𝐺 ) : 𝐴 –1-1→ 𝐶 ) |