This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for dfac12 . (Contributed by Mario Carneiro, 29-May-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | dfac12.1 | ⊢ ( 𝜑 → 𝐴 ∈ On ) | |
| dfac12.3 | ⊢ ( 𝜑 → 𝐹 : 𝒫 ( har ‘ ( 𝑅1 ‘ 𝐴 ) ) –1-1→ On ) | ||
| dfac12.4 | ⊢ 𝐺 = recs ( ( 𝑥 ∈ V ↦ ( 𝑦 ∈ ( 𝑅1 ‘ dom 𝑥 ) ↦ if ( dom 𝑥 = ∪ dom 𝑥 , ( ( suc ∪ ran ∪ ran 𝑥 ·o ( rank ‘ 𝑦 ) ) +o ( ( 𝑥 ‘ suc ( rank ‘ 𝑦 ) ) ‘ 𝑦 ) ) , ( 𝐹 ‘ ( ( ◡ OrdIso ( E , ran ( 𝑥 ‘ ∪ dom 𝑥 ) ) ∘ ( 𝑥 ‘ ∪ dom 𝑥 ) ) “ 𝑦 ) ) ) ) ) ) | ||
| Assertion | dfac12lem3 | ⊢ ( 𝜑 → ( 𝑅1 ‘ 𝐴 ) ∈ dom card ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dfac12.1 | ⊢ ( 𝜑 → 𝐴 ∈ On ) | |
| 2 | dfac12.3 | ⊢ ( 𝜑 → 𝐹 : 𝒫 ( har ‘ ( 𝑅1 ‘ 𝐴 ) ) –1-1→ On ) | |
| 3 | dfac12.4 | ⊢ 𝐺 = recs ( ( 𝑥 ∈ V ↦ ( 𝑦 ∈ ( 𝑅1 ‘ dom 𝑥 ) ↦ if ( dom 𝑥 = ∪ dom 𝑥 , ( ( suc ∪ ran ∪ ran 𝑥 ·o ( rank ‘ 𝑦 ) ) +o ( ( 𝑥 ‘ suc ( rank ‘ 𝑦 ) ) ‘ 𝑦 ) ) , ( 𝐹 ‘ ( ( ◡ OrdIso ( E , ran ( 𝑥 ‘ ∪ dom 𝑥 ) ) ∘ ( 𝑥 ‘ ∪ dom 𝑥 ) ) “ 𝑦 ) ) ) ) ) ) | |
| 4 | fvex | ⊢ ( 𝐺 ‘ 𝐴 ) ∈ V | |
| 5 | 4 | rnex | ⊢ ran ( 𝐺 ‘ 𝐴 ) ∈ V |
| 6 | ssid | ⊢ 𝐴 ⊆ 𝐴 | |
| 7 | sseq1 | ⊢ ( 𝑚 = 𝑛 → ( 𝑚 ⊆ 𝐴 ↔ 𝑛 ⊆ 𝐴 ) ) | |
| 8 | fveq2 | ⊢ ( 𝑚 = 𝑛 → ( 𝐺 ‘ 𝑚 ) = ( 𝐺 ‘ 𝑛 ) ) | |
| 9 | f1eq1 | ⊢ ( ( 𝐺 ‘ 𝑚 ) = ( 𝐺 ‘ 𝑛 ) → ( ( 𝐺 ‘ 𝑚 ) : ( 𝑅1 ‘ 𝑚 ) –1-1→ On ↔ ( 𝐺 ‘ 𝑛 ) : ( 𝑅1 ‘ 𝑚 ) –1-1→ On ) ) | |
| 10 | 8 9 | syl | ⊢ ( 𝑚 = 𝑛 → ( ( 𝐺 ‘ 𝑚 ) : ( 𝑅1 ‘ 𝑚 ) –1-1→ On ↔ ( 𝐺 ‘ 𝑛 ) : ( 𝑅1 ‘ 𝑚 ) –1-1→ On ) ) |
| 11 | fveq2 | ⊢ ( 𝑚 = 𝑛 → ( 𝑅1 ‘ 𝑚 ) = ( 𝑅1 ‘ 𝑛 ) ) | |
| 12 | f1eq2 | ⊢ ( ( 𝑅1 ‘ 𝑚 ) = ( 𝑅1 ‘ 𝑛 ) → ( ( 𝐺 ‘ 𝑛 ) : ( 𝑅1 ‘ 𝑚 ) –1-1→ On ↔ ( 𝐺 ‘ 𝑛 ) : ( 𝑅1 ‘ 𝑛 ) –1-1→ On ) ) | |
| 13 | 11 12 | syl | ⊢ ( 𝑚 = 𝑛 → ( ( 𝐺 ‘ 𝑛 ) : ( 𝑅1 ‘ 𝑚 ) –1-1→ On ↔ ( 𝐺 ‘ 𝑛 ) : ( 𝑅1 ‘ 𝑛 ) –1-1→ On ) ) |
| 14 | 10 13 | bitrd | ⊢ ( 𝑚 = 𝑛 → ( ( 𝐺 ‘ 𝑚 ) : ( 𝑅1 ‘ 𝑚 ) –1-1→ On ↔ ( 𝐺 ‘ 𝑛 ) : ( 𝑅1 ‘ 𝑛 ) –1-1→ On ) ) |
| 15 | 7 14 | imbi12d | ⊢ ( 𝑚 = 𝑛 → ( ( 𝑚 ⊆ 𝐴 → ( 𝐺 ‘ 𝑚 ) : ( 𝑅1 ‘ 𝑚 ) –1-1→ On ) ↔ ( 𝑛 ⊆ 𝐴 → ( 𝐺 ‘ 𝑛 ) : ( 𝑅1 ‘ 𝑛 ) –1-1→ On ) ) ) |
| 16 | 15 | imbi2d | ⊢ ( 𝑚 = 𝑛 → ( ( 𝜑 → ( 𝑚 ⊆ 𝐴 → ( 𝐺 ‘ 𝑚 ) : ( 𝑅1 ‘ 𝑚 ) –1-1→ On ) ) ↔ ( 𝜑 → ( 𝑛 ⊆ 𝐴 → ( 𝐺 ‘ 𝑛 ) : ( 𝑅1 ‘ 𝑛 ) –1-1→ On ) ) ) ) |
| 17 | sseq1 | ⊢ ( 𝑚 = 𝐴 → ( 𝑚 ⊆ 𝐴 ↔ 𝐴 ⊆ 𝐴 ) ) | |
| 18 | fveq2 | ⊢ ( 𝑚 = 𝐴 → ( 𝐺 ‘ 𝑚 ) = ( 𝐺 ‘ 𝐴 ) ) | |
| 19 | f1eq1 | ⊢ ( ( 𝐺 ‘ 𝑚 ) = ( 𝐺 ‘ 𝐴 ) → ( ( 𝐺 ‘ 𝑚 ) : ( 𝑅1 ‘ 𝑚 ) –1-1→ On ↔ ( 𝐺 ‘ 𝐴 ) : ( 𝑅1 ‘ 𝑚 ) –1-1→ On ) ) | |
| 20 | 18 19 | syl | ⊢ ( 𝑚 = 𝐴 → ( ( 𝐺 ‘ 𝑚 ) : ( 𝑅1 ‘ 𝑚 ) –1-1→ On ↔ ( 𝐺 ‘ 𝐴 ) : ( 𝑅1 ‘ 𝑚 ) –1-1→ On ) ) |
| 21 | fveq2 | ⊢ ( 𝑚 = 𝐴 → ( 𝑅1 ‘ 𝑚 ) = ( 𝑅1 ‘ 𝐴 ) ) | |
| 22 | f1eq2 | ⊢ ( ( 𝑅1 ‘ 𝑚 ) = ( 𝑅1 ‘ 𝐴 ) → ( ( 𝐺 ‘ 𝐴 ) : ( 𝑅1 ‘ 𝑚 ) –1-1→ On ↔ ( 𝐺 ‘ 𝐴 ) : ( 𝑅1 ‘ 𝐴 ) –1-1→ On ) ) | |
| 23 | 21 22 | syl | ⊢ ( 𝑚 = 𝐴 → ( ( 𝐺 ‘ 𝐴 ) : ( 𝑅1 ‘ 𝑚 ) –1-1→ On ↔ ( 𝐺 ‘ 𝐴 ) : ( 𝑅1 ‘ 𝐴 ) –1-1→ On ) ) |
| 24 | 20 23 | bitrd | ⊢ ( 𝑚 = 𝐴 → ( ( 𝐺 ‘ 𝑚 ) : ( 𝑅1 ‘ 𝑚 ) –1-1→ On ↔ ( 𝐺 ‘ 𝐴 ) : ( 𝑅1 ‘ 𝐴 ) –1-1→ On ) ) |
| 25 | 17 24 | imbi12d | ⊢ ( 𝑚 = 𝐴 → ( ( 𝑚 ⊆ 𝐴 → ( 𝐺 ‘ 𝑚 ) : ( 𝑅1 ‘ 𝑚 ) –1-1→ On ) ↔ ( 𝐴 ⊆ 𝐴 → ( 𝐺 ‘ 𝐴 ) : ( 𝑅1 ‘ 𝐴 ) –1-1→ On ) ) ) |
| 26 | 25 | imbi2d | ⊢ ( 𝑚 = 𝐴 → ( ( 𝜑 → ( 𝑚 ⊆ 𝐴 → ( 𝐺 ‘ 𝑚 ) : ( 𝑅1 ‘ 𝑚 ) –1-1→ On ) ) ↔ ( 𝜑 → ( 𝐴 ⊆ 𝐴 → ( 𝐺 ‘ 𝐴 ) : ( 𝑅1 ‘ 𝐴 ) –1-1→ On ) ) ) ) |
| 27 | r19.21v | ⊢ ( ∀ 𝑛 ∈ 𝑚 ( 𝜑 → ( 𝑛 ⊆ 𝐴 → ( 𝐺 ‘ 𝑛 ) : ( 𝑅1 ‘ 𝑛 ) –1-1→ On ) ) ↔ ( 𝜑 → ∀ 𝑛 ∈ 𝑚 ( 𝑛 ⊆ 𝐴 → ( 𝐺 ‘ 𝑛 ) : ( 𝑅1 ‘ 𝑛 ) –1-1→ On ) ) ) | |
| 28 | eloni | ⊢ ( 𝑚 ∈ On → Ord 𝑚 ) | |
| 29 | 28 | ad2antrl | ⊢ ( ( 𝜑 ∧ ( 𝑚 ∈ On ∧ 𝑚 ⊆ 𝐴 ) ) → Ord 𝑚 ) |
| 30 | ordelss | ⊢ ( ( Ord 𝑚 ∧ 𝑛 ∈ 𝑚 ) → 𝑛 ⊆ 𝑚 ) | |
| 31 | 29 30 | sylan | ⊢ ( ( ( 𝜑 ∧ ( 𝑚 ∈ On ∧ 𝑚 ⊆ 𝐴 ) ) ∧ 𝑛 ∈ 𝑚 ) → 𝑛 ⊆ 𝑚 ) |
| 32 | simplrr | ⊢ ( ( ( 𝜑 ∧ ( 𝑚 ∈ On ∧ 𝑚 ⊆ 𝐴 ) ) ∧ 𝑛 ∈ 𝑚 ) → 𝑚 ⊆ 𝐴 ) | |
| 33 | 31 32 | sstrd | ⊢ ( ( ( 𝜑 ∧ ( 𝑚 ∈ On ∧ 𝑚 ⊆ 𝐴 ) ) ∧ 𝑛 ∈ 𝑚 ) → 𝑛 ⊆ 𝐴 ) |
| 34 | pm5.5 | ⊢ ( 𝑛 ⊆ 𝐴 → ( ( 𝑛 ⊆ 𝐴 → ( 𝐺 ‘ 𝑛 ) : ( 𝑅1 ‘ 𝑛 ) –1-1→ On ) ↔ ( 𝐺 ‘ 𝑛 ) : ( 𝑅1 ‘ 𝑛 ) –1-1→ On ) ) | |
| 35 | 33 34 | syl | ⊢ ( ( ( 𝜑 ∧ ( 𝑚 ∈ On ∧ 𝑚 ⊆ 𝐴 ) ) ∧ 𝑛 ∈ 𝑚 ) → ( ( 𝑛 ⊆ 𝐴 → ( 𝐺 ‘ 𝑛 ) : ( 𝑅1 ‘ 𝑛 ) –1-1→ On ) ↔ ( 𝐺 ‘ 𝑛 ) : ( 𝑅1 ‘ 𝑛 ) –1-1→ On ) ) |
| 36 | 35 | ralbidva | ⊢ ( ( 𝜑 ∧ ( 𝑚 ∈ On ∧ 𝑚 ⊆ 𝐴 ) ) → ( ∀ 𝑛 ∈ 𝑚 ( 𝑛 ⊆ 𝐴 → ( 𝐺 ‘ 𝑛 ) : ( 𝑅1 ‘ 𝑛 ) –1-1→ On ) ↔ ∀ 𝑛 ∈ 𝑚 ( 𝐺 ‘ 𝑛 ) : ( 𝑅1 ‘ 𝑛 ) –1-1→ On ) ) |
| 37 | 1 | ad2antrr | ⊢ ( ( ( 𝜑 ∧ ( 𝑚 ∈ On ∧ 𝑚 ⊆ 𝐴 ) ) ∧ ∀ 𝑛 ∈ 𝑚 ( 𝐺 ‘ 𝑛 ) : ( 𝑅1 ‘ 𝑛 ) –1-1→ On ) → 𝐴 ∈ On ) |
| 38 | 2 | ad2antrr | ⊢ ( ( ( 𝜑 ∧ ( 𝑚 ∈ On ∧ 𝑚 ⊆ 𝐴 ) ) ∧ ∀ 𝑛 ∈ 𝑚 ( 𝐺 ‘ 𝑛 ) : ( 𝑅1 ‘ 𝑛 ) –1-1→ On ) → 𝐹 : 𝒫 ( har ‘ ( 𝑅1 ‘ 𝐴 ) ) –1-1→ On ) |
| 39 | simplrl | ⊢ ( ( ( 𝜑 ∧ ( 𝑚 ∈ On ∧ 𝑚 ⊆ 𝐴 ) ) ∧ ∀ 𝑛 ∈ 𝑚 ( 𝐺 ‘ 𝑛 ) : ( 𝑅1 ‘ 𝑛 ) –1-1→ On ) → 𝑚 ∈ On ) | |
| 40 | eqid | ⊢ ( ◡ OrdIso ( E , ran ( 𝐺 ‘ ∪ 𝑚 ) ) ∘ ( 𝐺 ‘ ∪ 𝑚 ) ) = ( ◡ OrdIso ( E , ran ( 𝐺 ‘ ∪ 𝑚 ) ) ∘ ( 𝐺 ‘ ∪ 𝑚 ) ) | |
| 41 | simplrr | ⊢ ( ( ( 𝜑 ∧ ( 𝑚 ∈ On ∧ 𝑚 ⊆ 𝐴 ) ) ∧ ∀ 𝑛 ∈ 𝑚 ( 𝐺 ‘ 𝑛 ) : ( 𝑅1 ‘ 𝑛 ) –1-1→ On ) → 𝑚 ⊆ 𝐴 ) | |
| 42 | simpr | ⊢ ( ( ( 𝜑 ∧ ( 𝑚 ∈ On ∧ 𝑚 ⊆ 𝐴 ) ) ∧ ∀ 𝑛 ∈ 𝑚 ( 𝐺 ‘ 𝑛 ) : ( 𝑅1 ‘ 𝑛 ) –1-1→ On ) → ∀ 𝑛 ∈ 𝑚 ( 𝐺 ‘ 𝑛 ) : ( 𝑅1 ‘ 𝑛 ) –1-1→ On ) | |
| 43 | fveq2 | ⊢ ( 𝑛 = 𝑧 → ( 𝐺 ‘ 𝑛 ) = ( 𝐺 ‘ 𝑧 ) ) | |
| 44 | f1eq1 | ⊢ ( ( 𝐺 ‘ 𝑛 ) = ( 𝐺 ‘ 𝑧 ) → ( ( 𝐺 ‘ 𝑛 ) : ( 𝑅1 ‘ 𝑛 ) –1-1→ On ↔ ( 𝐺 ‘ 𝑧 ) : ( 𝑅1 ‘ 𝑛 ) –1-1→ On ) ) | |
| 45 | 43 44 | syl | ⊢ ( 𝑛 = 𝑧 → ( ( 𝐺 ‘ 𝑛 ) : ( 𝑅1 ‘ 𝑛 ) –1-1→ On ↔ ( 𝐺 ‘ 𝑧 ) : ( 𝑅1 ‘ 𝑛 ) –1-1→ On ) ) |
| 46 | fveq2 | ⊢ ( 𝑛 = 𝑧 → ( 𝑅1 ‘ 𝑛 ) = ( 𝑅1 ‘ 𝑧 ) ) | |
| 47 | f1eq2 | ⊢ ( ( 𝑅1 ‘ 𝑛 ) = ( 𝑅1 ‘ 𝑧 ) → ( ( 𝐺 ‘ 𝑧 ) : ( 𝑅1 ‘ 𝑛 ) –1-1→ On ↔ ( 𝐺 ‘ 𝑧 ) : ( 𝑅1 ‘ 𝑧 ) –1-1→ On ) ) | |
| 48 | 46 47 | syl | ⊢ ( 𝑛 = 𝑧 → ( ( 𝐺 ‘ 𝑧 ) : ( 𝑅1 ‘ 𝑛 ) –1-1→ On ↔ ( 𝐺 ‘ 𝑧 ) : ( 𝑅1 ‘ 𝑧 ) –1-1→ On ) ) |
| 49 | 45 48 | bitrd | ⊢ ( 𝑛 = 𝑧 → ( ( 𝐺 ‘ 𝑛 ) : ( 𝑅1 ‘ 𝑛 ) –1-1→ On ↔ ( 𝐺 ‘ 𝑧 ) : ( 𝑅1 ‘ 𝑧 ) –1-1→ On ) ) |
| 50 | 49 | cbvralvw | ⊢ ( ∀ 𝑛 ∈ 𝑚 ( 𝐺 ‘ 𝑛 ) : ( 𝑅1 ‘ 𝑛 ) –1-1→ On ↔ ∀ 𝑧 ∈ 𝑚 ( 𝐺 ‘ 𝑧 ) : ( 𝑅1 ‘ 𝑧 ) –1-1→ On ) |
| 51 | 42 50 | sylib | ⊢ ( ( ( 𝜑 ∧ ( 𝑚 ∈ On ∧ 𝑚 ⊆ 𝐴 ) ) ∧ ∀ 𝑛 ∈ 𝑚 ( 𝐺 ‘ 𝑛 ) : ( 𝑅1 ‘ 𝑛 ) –1-1→ On ) → ∀ 𝑧 ∈ 𝑚 ( 𝐺 ‘ 𝑧 ) : ( 𝑅1 ‘ 𝑧 ) –1-1→ On ) |
| 52 | 37 38 3 39 40 41 51 | dfac12lem2 | ⊢ ( ( ( 𝜑 ∧ ( 𝑚 ∈ On ∧ 𝑚 ⊆ 𝐴 ) ) ∧ ∀ 𝑛 ∈ 𝑚 ( 𝐺 ‘ 𝑛 ) : ( 𝑅1 ‘ 𝑛 ) –1-1→ On ) → ( 𝐺 ‘ 𝑚 ) : ( 𝑅1 ‘ 𝑚 ) –1-1→ On ) |
| 53 | 52 | ex | ⊢ ( ( 𝜑 ∧ ( 𝑚 ∈ On ∧ 𝑚 ⊆ 𝐴 ) ) → ( ∀ 𝑛 ∈ 𝑚 ( 𝐺 ‘ 𝑛 ) : ( 𝑅1 ‘ 𝑛 ) –1-1→ On → ( 𝐺 ‘ 𝑚 ) : ( 𝑅1 ‘ 𝑚 ) –1-1→ On ) ) |
| 54 | 36 53 | sylbid | ⊢ ( ( 𝜑 ∧ ( 𝑚 ∈ On ∧ 𝑚 ⊆ 𝐴 ) ) → ( ∀ 𝑛 ∈ 𝑚 ( 𝑛 ⊆ 𝐴 → ( 𝐺 ‘ 𝑛 ) : ( 𝑅1 ‘ 𝑛 ) –1-1→ On ) → ( 𝐺 ‘ 𝑚 ) : ( 𝑅1 ‘ 𝑚 ) –1-1→ On ) ) |
| 55 | 54 | expr | ⊢ ( ( 𝜑 ∧ 𝑚 ∈ On ) → ( 𝑚 ⊆ 𝐴 → ( ∀ 𝑛 ∈ 𝑚 ( 𝑛 ⊆ 𝐴 → ( 𝐺 ‘ 𝑛 ) : ( 𝑅1 ‘ 𝑛 ) –1-1→ On ) → ( 𝐺 ‘ 𝑚 ) : ( 𝑅1 ‘ 𝑚 ) –1-1→ On ) ) ) |
| 56 | 55 | com23 | ⊢ ( ( 𝜑 ∧ 𝑚 ∈ On ) → ( ∀ 𝑛 ∈ 𝑚 ( 𝑛 ⊆ 𝐴 → ( 𝐺 ‘ 𝑛 ) : ( 𝑅1 ‘ 𝑛 ) –1-1→ On ) → ( 𝑚 ⊆ 𝐴 → ( 𝐺 ‘ 𝑚 ) : ( 𝑅1 ‘ 𝑚 ) –1-1→ On ) ) ) |
| 57 | 56 | expcom | ⊢ ( 𝑚 ∈ On → ( 𝜑 → ( ∀ 𝑛 ∈ 𝑚 ( 𝑛 ⊆ 𝐴 → ( 𝐺 ‘ 𝑛 ) : ( 𝑅1 ‘ 𝑛 ) –1-1→ On ) → ( 𝑚 ⊆ 𝐴 → ( 𝐺 ‘ 𝑚 ) : ( 𝑅1 ‘ 𝑚 ) –1-1→ On ) ) ) ) |
| 58 | 57 | a2d | ⊢ ( 𝑚 ∈ On → ( ( 𝜑 → ∀ 𝑛 ∈ 𝑚 ( 𝑛 ⊆ 𝐴 → ( 𝐺 ‘ 𝑛 ) : ( 𝑅1 ‘ 𝑛 ) –1-1→ On ) ) → ( 𝜑 → ( 𝑚 ⊆ 𝐴 → ( 𝐺 ‘ 𝑚 ) : ( 𝑅1 ‘ 𝑚 ) –1-1→ On ) ) ) ) |
| 59 | 27 58 | biimtrid | ⊢ ( 𝑚 ∈ On → ( ∀ 𝑛 ∈ 𝑚 ( 𝜑 → ( 𝑛 ⊆ 𝐴 → ( 𝐺 ‘ 𝑛 ) : ( 𝑅1 ‘ 𝑛 ) –1-1→ On ) ) → ( 𝜑 → ( 𝑚 ⊆ 𝐴 → ( 𝐺 ‘ 𝑚 ) : ( 𝑅1 ‘ 𝑚 ) –1-1→ On ) ) ) ) |
| 60 | 16 26 59 | tfis3 | ⊢ ( 𝐴 ∈ On → ( 𝜑 → ( 𝐴 ⊆ 𝐴 → ( 𝐺 ‘ 𝐴 ) : ( 𝑅1 ‘ 𝐴 ) –1-1→ On ) ) ) |
| 61 | 1 60 | mpcom | ⊢ ( 𝜑 → ( 𝐴 ⊆ 𝐴 → ( 𝐺 ‘ 𝐴 ) : ( 𝑅1 ‘ 𝐴 ) –1-1→ On ) ) |
| 62 | 6 61 | mpi | ⊢ ( 𝜑 → ( 𝐺 ‘ 𝐴 ) : ( 𝑅1 ‘ 𝐴 ) –1-1→ On ) |
| 63 | f1f | ⊢ ( ( 𝐺 ‘ 𝐴 ) : ( 𝑅1 ‘ 𝐴 ) –1-1→ On → ( 𝐺 ‘ 𝐴 ) : ( 𝑅1 ‘ 𝐴 ) ⟶ On ) | |
| 64 | frn | ⊢ ( ( 𝐺 ‘ 𝐴 ) : ( 𝑅1 ‘ 𝐴 ) ⟶ On → ran ( 𝐺 ‘ 𝐴 ) ⊆ On ) | |
| 65 | 62 63 64 | 3syl | ⊢ ( 𝜑 → ran ( 𝐺 ‘ 𝐴 ) ⊆ On ) |
| 66 | onssnum | ⊢ ( ( ran ( 𝐺 ‘ 𝐴 ) ∈ V ∧ ran ( 𝐺 ‘ 𝐴 ) ⊆ On ) → ran ( 𝐺 ‘ 𝐴 ) ∈ dom card ) | |
| 67 | 5 65 66 | sylancr | ⊢ ( 𝜑 → ran ( 𝐺 ‘ 𝐴 ) ∈ dom card ) |
| 68 | f1f1orn | ⊢ ( ( 𝐺 ‘ 𝐴 ) : ( 𝑅1 ‘ 𝐴 ) –1-1→ On → ( 𝐺 ‘ 𝐴 ) : ( 𝑅1 ‘ 𝐴 ) –1-1-onto→ ran ( 𝐺 ‘ 𝐴 ) ) | |
| 69 | 62 68 | syl | ⊢ ( 𝜑 → ( 𝐺 ‘ 𝐴 ) : ( 𝑅1 ‘ 𝐴 ) –1-1-onto→ ran ( 𝐺 ‘ 𝐴 ) ) |
| 70 | fvex | ⊢ ( 𝑅1 ‘ 𝐴 ) ∈ V | |
| 71 | 70 | f1oen | ⊢ ( ( 𝐺 ‘ 𝐴 ) : ( 𝑅1 ‘ 𝐴 ) –1-1-onto→ ran ( 𝐺 ‘ 𝐴 ) → ( 𝑅1 ‘ 𝐴 ) ≈ ran ( 𝐺 ‘ 𝐴 ) ) |
| 72 | ennum | ⊢ ( ( 𝑅1 ‘ 𝐴 ) ≈ ran ( 𝐺 ‘ 𝐴 ) → ( ( 𝑅1 ‘ 𝐴 ) ∈ dom card ↔ ran ( 𝐺 ‘ 𝐴 ) ∈ dom card ) ) | |
| 73 | 69 71 72 | 3syl | ⊢ ( 𝜑 → ( ( 𝑅1 ‘ 𝐴 ) ∈ dom card ↔ ran ( 𝐺 ‘ 𝐴 ) ∈ dom card ) ) |
| 74 | 67 73 | mpbird | ⊢ ( 𝜑 → ( 𝑅1 ‘ 𝐴 ) ∈ dom card ) |