This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: An ordered pair-like theorem for ordinal multiplication. (Contributed by Mario Carneiro, 29-May-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | omopth2 | ⊢ ( ( ( 𝐴 ∈ On ∧ 𝐴 ≠ ∅ ) ∧ ( 𝐵 ∈ On ∧ 𝐶 ∈ 𝐴 ) ∧ ( 𝐷 ∈ On ∧ 𝐸 ∈ 𝐴 ) ) → ( ( ( 𝐴 ·o 𝐵 ) +o 𝐶 ) = ( ( 𝐴 ·o 𝐷 ) +o 𝐸 ) ↔ ( 𝐵 = 𝐷 ∧ 𝐶 = 𝐸 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simpl2l | ⊢ ( ( ( ( 𝐴 ∈ On ∧ 𝐴 ≠ ∅ ) ∧ ( 𝐵 ∈ On ∧ 𝐶 ∈ 𝐴 ) ∧ ( 𝐷 ∈ On ∧ 𝐸 ∈ 𝐴 ) ) ∧ ( ( 𝐴 ·o 𝐵 ) +o 𝐶 ) = ( ( 𝐴 ·o 𝐷 ) +o 𝐸 ) ) → 𝐵 ∈ On ) | |
| 2 | eloni | ⊢ ( 𝐵 ∈ On → Ord 𝐵 ) | |
| 3 | 1 2 | syl | ⊢ ( ( ( ( 𝐴 ∈ On ∧ 𝐴 ≠ ∅ ) ∧ ( 𝐵 ∈ On ∧ 𝐶 ∈ 𝐴 ) ∧ ( 𝐷 ∈ On ∧ 𝐸 ∈ 𝐴 ) ) ∧ ( ( 𝐴 ·o 𝐵 ) +o 𝐶 ) = ( ( 𝐴 ·o 𝐷 ) +o 𝐸 ) ) → Ord 𝐵 ) |
| 4 | simpl3l | ⊢ ( ( ( ( 𝐴 ∈ On ∧ 𝐴 ≠ ∅ ) ∧ ( 𝐵 ∈ On ∧ 𝐶 ∈ 𝐴 ) ∧ ( 𝐷 ∈ On ∧ 𝐸 ∈ 𝐴 ) ) ∧ ( ( 𝐴 ·o 𝐵 ) +o 𝐶 ) = ( ( 𝐴 ·o 𝐷 ) +o 𝐸 ) ) → 𝐷 ∈ On ) | |
| 5 | eloni | ⊢ ( 𝐷 ∈ On → Ord 𝐷 ) | |
| 6 | 4 5 | syl | ⊢ ( ( ( ( 𝐴 ∈ On ∧ 𝐴 ≠ ∅ ) ∧ ( 𝐵 ∈ On ∧ 𝐶 ∈ 𝐴 ) ∧ ( 𝐷 ∈ On ∧ 𝐸 ∈ 𝐴 ) ) ∧ ( ( 𝐴 ·o 𝐵 ) +o 𝐶 ) = ( ( 𝐴 ·o 𝐷 ) +o 𝐸 ) ) → Ord 𝐷 ) |
| 7 | ordtri3or | ⊢ ( ( Ord 𝐵 ∧ Ord 𝐷 ) → ( 𝐵 ∈ 𝐷 ∨ 𝐵 = 𝐷 ∨ 𝐷 ∈ 𝐵 ) ) | |
| 8 | 3 6 7 | syl2anc | ⊢ ( ( ( ( 𝐴 ∈ On ∧ 𝐴 ≠ ∅ ) ∧ ( 𝐵 ∈ On ∧ 𝐶 ∈ 𝐴 ) ∧ ( 𝐷 ∈ On ∧ 𝐸 ∈ 𝐴 ) ) ∧ ( ( 𝐴 ·o 𝐵 ) +o 𝐶 ) = ( ( 𝐴 ·o 𝐷 ) +o 𝐸 ) ) → ( 𝐵 ∈ 𝐷 ∨ 𝐵 = 𝐷 ∨ 𝐷 ∈ 𝐵 ) ) |
| 9 | simpr | ⊢ ( ( ( ( 𝐴 ∈ On ∧ 𝐴 ≠ ∅ ) ∧ ( 𝐵 ∈ On ∧ 𝐶 ∈ 𝐴 ) ∧ ( 𝐷 ∈ On ∧ 𝐸 ∈ 𝐴 ) ) ∧ ( ( 𝐴 ·o 𝐵 ) +o 𝐶 ) = ( ( 𝐴 ·o 𝐷 ) +o 𝐸 ) ) → ( ( 𝐴 ·o 𝐵 ) +o 𝐶 ) = ( ( 𝐴 ·o 𝐷 ) +o 𝐸 ) ) | |
| 10 | simpl1l | ⊢ ( ( ( ( 𝐴 ∈ On ∧ 𝐴 ≠ ∅ ) ∧ ( 𝐵 ∈ On ∧ 𝐶 ∈ 𝐴 ) ∧ ( 𝐷 ∈ On ∧ 𝐸 ∈ 𝐴 ) ) ∧ ( ( 𝐴 ·o 𝐵 ) +o 𝐶 ) = ( ( 𝐴 ·o 𝐷 ) +o 𝐸 ) ) → 𝐴 ∈ On ) | |
| 11 | omcl | ⊢ ( ( 𝐴 ∈ On ∧ 𝐷 ∈ On ) → ( 𝐴 ·o 𝐷 ) ∈ On ) | |
| 12 | 10 4 11 | syl2anc | ⊢ ( ( ( ( 𝐴 ∈ On ∧ 𝐴 ≠ ∅ ) ∧ ( 𝐵 ∈ On ∧ 𝐶 ∈ 𝐴 ) ∧ ( 𝐷 ∈ On ∧ 𝐸 ∈ 𝐴 ) ) ∧ ( ( 𝐴 ·o 𝐵 ) +o 𝐶 ) = ( ( 𝐴 ·o 𝐷 ) +o 𝐸 ) ) → ( 𝐴 ·o 𝐷 ) ∈ On ) |
| 13 | simpl3r | ⊢ ( ( ( ( 𝐴 ∈ On ∧ 𝐴 ≠ ∅ ) ∧ ( 𝐵 ∈ On ∧ 𝐶 ∈ 𝐴 ) ∧ ( 𝐷 ∈ On ∧ 𝐸 ∈ 𝐴 ) ) ∧ ( ( 𝐴 ·o 𝐵 ) +o 𝐶 ) = ( ( 𝐴 ·o 𝐷 ) +o 𝐸 ) ) → 𝐸 ∈ 𝐴 ) | |
| 14 | onelon | ⊢ ( ( 𝐴 ∈ On ∧ 𝐸 ∈ 𝐴 ) → 𝐸 ∈ On ) | |
| 15 | 10 13 14 | syl2anc | ⊢ ( ( ( ( 𝐴 ∈ On ∧ 𝐴 ≠ ∅ ) ∧ ( 𝐵 ∈ On ∧ 𝐶 ∈ 𝐴 ) ∧ ( 𝐷 ∈ On ∧ 𝐸 ∈ 𝐴 ) ) ∧ ( ( 𝐴 ·o 𝐵 ) +o 𝐶 ) = ( ( 𝐴 ·o 𝐷 ) +o 𝐸 ) ) → 𝐸 ∈ On ) |
| 16 | oacl | ⊢ ( ( ( 𝐴 ·o 𝐷 ) ∈ On ∧ 𝐸 ∈ On ) → ( ( 𝐴 ·o 𝐷 ) +o 𝐸 ) ∈ On ) | |
| 17 | 12 15 16 | syl2anc | ⊢ ( ( ( ( 𝐴 ∈ On ∧ 𝐴 ≠ ∅ ) ∧ ( 𝐵 ∈ On ∧ 𝐶 ∈ 𝐴 ) ∧ ( 𝐷 ∈ On ∧ 𝐸 ∈ 𝐴 ) ) ∧ ( ( 𝐴 ·o 𝐵 ) +o 𝐶 ) = ( ( 𝐴 ·o 𝐷 ) +o 𝐸 ) ) → ( ( 𝐴 ·o 𝐷 ) +o 𝐸 ) ∈ On ) |
| 18 | eloni | ⊢ ( ( ( 𝐴 ·o 𝐷 ) +o 𝐸 ) ∈ On → Ord ( ( 𝐴 ·o 𝐷 ) +o 𝐸 ) ) | |
| 19 | ordirr | ⊢ ( Ord ( ( 𝐴 ·o 𝐷 ) +o 𝐸 ) → ¬ ( ( 𝐴 ·o 𝐷 ) +o 𝐸 ) ∈ ( ( 𝐴 ·o 𝐷 ) +o 𝐸 ) ) | |
| 20 | 17 18 19 | 3syl | ⊢ ( ( ( ( 𝐴 ∈ On ∧ 𝐴 ≠ ∅ ) ∧ ( 𝐵 ∈ On ∧ 𝐶 ∈ 𝐴 ) ∧ ( 𝐷 ∈ On ∧ 𝐸 ∈ 𝐴 ) ) ∧ ( ( 𝐴 ·o 𝐵 ) +o 𝐶 ) = ( ( 𝐴 ·o 𝐷 ) +o 𝐸 ) ) → ¬ ( ( 𝐴 ·o 𝐷 ) +o 𝐸 ) ∈ ( ( 𝐴 ·o 𝐷 ) +o 𝐸 ) ) |
| 21 | 9 20 | eqneltrd | ⊢ ( ( ( ( 𝐴 ∈ On ∧ 𝐴 ≠ ∅ ) ∧ ( 𝐵 ∈ On ∧ 𝐶 ∈ 𝐴 ) ∧ ( 𝐷 ∈ On ∧ 𝐸 ∈ 𝐴 ) ) ∧ ( ( 𝐴 ·o 𝐵 ) +o 𝐶 ) = ( ( 𝐴 ·o 𝐷 ) +o 𝐸 ) ) → ¬ ( ( 𝐴 ·o 𝐵 ) +o 𝐶 ) ∈ ( ( 𝐴 ·o 𝐷 ) +o 𝐸 ) ) |
| 22 | orc | ⊢ ( 𝐵 ∈ 𝐷 → ( 𝐵 ∈ 𝐷 ∨ ( 𝐵 = 𝐷 ∧ 𝐶 ∈ 𝐸 ) ) ) | |
| 23 | omeulem2 | ⊢ ( ( ( 𝐴 ∈ On ∧ 𝐴 ≠ ∅ ) ∧ ( 𝐵 ∈ On ∧ 𝐶 ∈ 𝐴 ) ∧ ( 𝐷 ∈ On ∧ 𝐸 ∈ 𝐴 ) ) → ( ( 𝐵 ∈ 𝐷 ∨ ( 𝐵 = 𝐷 ∧ 𝐶 ∈ 𝐸 ) ) → ( ( 𝐴 ·o 𝐵 ) +o 𝐶 ) ∈ ( ( 𝐴 ·o 𝐷 ) +o 𝐸 ) ) ) | |
| 24 | 23 | adantr | ⊢ ( ( ( ( 𝐴 ∈ On ∧ 𝐴 ≠ ∅ ) ∧ ( 𝐵 ∈ On ∧ 𝐶 ∈ 𝐴 ) ∧ ( 𝐷 ∈ On ∧ 𝐸 ∈ 𝐴 ) ) ∧ ( ( 𝐴 ·o 𝐵 ) +o 𝐶 ) = ( ( 𝐴 ·o 𝐷 ) +o 𝐸 ) ) → ( ( 𝐵 ∈ 𝐷 ∨ ( 𝐵 = 𝐷 ∧ 𝐶 ∈ 𝐸 ) ) → ( ( 𝐴 ·o 𝐵 ) +o 𝐶 ) ∈ ( ( 𝐴 ·o 𝐷 ) +o 𝐸 ) ) ) |
| 25 | 22 24 | syl5 | ⊢ ( ( ( ( 𝐴 ∈ On ∧ 𝐴 ≠ ∅ ) ∧ ( 𝐵 ∈ On ∧ 𝐶 ∈ 𝐴 ) ∧ ( 𝐷 ∈ On ∧ 𝐸 ∈ 𝐴 ) ) ∧ ( ( 𝐴 ·o 𝐵 ) +o 𝐶 ) = ( ( 𝐴 ·o 𝐷 ) +o 𝐸 ) ) → ( 𝐵 ∈ 𝐷 → ( ( 𝐴 ·o 𝐵 ) +o 𝐶 ) ∈ ( ( 𝐴 ·o 𝐷 ) +o 𝐸 ) ) ) |
| 26 | 21 25 | mtod | ⊢ ( ( ( ( 𝐴 ∈ On ∧ 𝐴 ≠ ∅ ) ∧ ( 𝐵 ∈ On ∧ 𝐶 ∈ 𝐴 ) ∧ ( 𝐷 ∈ On ∧ 𝐸 ∈ 𝐴 ) ) ∧ ( ( 𝐴 ·o 𝐵 ) +o 𝐶 ) = ( ( 𝐴 ·o 𝐷 ) +o 𝐸 ) ) → ¬ 𝐵 ∈ 𝐷 ) |
| 27 | 26 | pm2.21d | ⊢ ( ( ( ( 𝐴 ∈ On ∧ 𝐴 ≠ ∅ ) ∧ ( 𝐵 ∈ On ∧ 𝐶 ∈ 𝐴 ) ∧ ( 𝐷 ∈ On ∧ 𝐸 ∈ 𝐴 ) ) ∧ ( ( 𝐴 ·o 𝐵 ) +o 𝐶 ) = ( ( 𝐴 ·o 𝐷 ) +o 𝐸 ) ) → ( 𝐵 ∈ 𝐷 → 𝐵 = 𝐷 ) ) |
| 28 | idd | ⊢ ( ( ( ( 𝐴 ∈ On ∧ 𝐴 ≠ ∅ ) ∧ ( 𝐵 ∈ On ∧ 𝐶 ∈ 𝐴 ) ∧ ( 𝐷 ∈ On ∧ 𝐸 ∈ 𝐴 ) ) ∧ ( ( 𝐴 ·o 𝐵 ) +o 𝐶 ) = ( ( 𝐴 ·o 𝐷 ) +o 𝐸 ) ) → ( 𝐵 = 𝐷 → 𝐵 = 𝐷 ) ) | |
| 29 | 20 9 | neleqtrrd | ⊢ ( ( ( ( 𝐴 ∈ On ∧ 𝐴 ≠ ∅ ) ∧ ( 𝐵 ∈ On ∧ 𝐶 ∈ 𝐴 ) ∧ ( 𝐷 ∈ On ∧ 𝐸 ∈ 𝐴 ) ) ∧ ( ( 𝐴 ·o 𝐵 ) +o 𝐶 ) = ( ( 𝐴 ·o 𝐷 ) +o 𝐸 ) ) → ¬ ( ( 𝐴 ·o 𝐷 ) +o 𝐸 ) ∈ ( ( 𝐴 ·o 𝐵 ) +o 𝐶 ) ) |
| 30 | orc | ⊢ ( 𝐷 ∈ 𝐵 → ( 𝐷 ∈ 𝐵 ∨ ( 𝐷 = 𝐵 ∧ 𝐸 ∈ 𝐶 ) ) ) | |
| 31 | simpl1r | ⊢ ( ( ( ( 𝐴 ∈ On ∧ 𝐴 ≠ ∅ ) ∧ ( 𝐵 ∈ On ∧ 𝐶 ∈ 𝐴 ) ∧ ( 𝐷 ∈ On ∧ 𝐸 ∈ 𝐴 ) ) ∧ ( ( 𝐴 ·o 𝐵 ) +o 𝐶 ) = ( ( 𝐴 ·o 𝐷 ) +o 𝐸 ) ) → 𝐴 ≠ ∅ ) | |
| 32 | simpl2r | ⊢ ( ( ( ( 𝐴 ∈ On ∧ 𝐴 ≠ ∅ ) ∧ ( 𝐵 ∈ On ∧ 𝐶 ∈ 𝐴 ) ∧ ( 𝐷 ∈ On ∧ 𝐸 ∈ 𝐴 ) ) ∧ ( ( 𝐴 ·o 𝐵 ) +o 𝐶 ) = ( ( 𝐴 ·o 𝐷 ) +o 𝐸 ) ) → 𝐶 ∈ 𝐴 ) | |
| 33 | omeulem2 | ⊢ ( ( ( 𝐴 ∈ On ∧ 𝐴 ≠ ∅ ) ∧ ( 𝐷 ∈ On ∧ 𝐸 ∈ 𝐴 ) ∧ ( 𝐵 ∈ On ∧ 𝐶 ∈ 𝐴 ) ) → ( ( 𝐷 ∈ 𝐵 ∨ ( 𝐷 = 𝐵 ∧ 𝐸 ∈ 𝐶 ) ) → ( ( 𝐴 ·o 𝐷 ) +o 𝐸 ) ∈ ( ( 𝐴 ·o 𝐵 ) +o 𝐶 ) ) ) | |
| 34 | 10 31 4 13 1 32 33 | syl222anc | ⊢ ( ( ( ( 𝐴 ∈ On ∧ 𝐴 ≠ ∅ ) ∧ ( 𝐵 ∈ On ∧ 𝐶 ∈ 𝐴 ) ∧ ( 𝐷 ∈ On ∧ 𝐸 ∈ 𝐴 ) ) ∧ ( ( 𝐴 ·o 𝐵 ) +o 𝐶 ) = ( ( 𝐴 ·o 𝐷 ) +o 𝐸 ) ) → ( ( 𝐷 ∈ 𝐵 ∨ ( 𝐷 = 𝐵 ∧ 𝐸 ∈ 𝐶 ) ) → ( ( 𝐴 ·o 𝐷 ) +o 𝐸 ) ∈ ( ( 𝐴 ·o 𝐵 ) +o 𝐶 ) ) ) |
| 35 | 30 34 | syl5 | ⊢ ( ( ( ( 𝐴 ∈ On ∧ 𝐴 ≠ ∅ ) ∧ ( 𝐵 ∈ On ∧ 𝐶 ∈ 𝐴 ) ∧ ( 𝐷 ∈ On ∧ 𝐸 ∈ 𝐴 ) ) ∧ ( ( 𝐴 ·o 𝐵 ) +o 𝐶 ) = ( ( 𝐴 ·o 𝐷 ) +o 𝐸 ) ) → ( 𝐷 ∈ 𝐵 → ( ( 𝐴 ·o 𝐷 ) +o 𝐸 ) ∈ ( ( 𝐴 ·o 𝐵 ) +o 𝐶 ) ) ) |
| 36 | 29 35 | mtod | ⊢ ( ( ( ( 𝐴 ∈ On ∧ 𝐴 ≠ ∅ ) ∧ ( 𝐵 ∈ On ∧ 𝐶 ∈ 𝐴 ) ∧ ( 𝐷 ∈ On ∧ 𝐸 ∈ 𝐴 ) ) ∧ ( ( 𝐴 ·o 𝐵 ) +o 𝐶 ) = ( ( 𝐴 ·o 𝐷 ) +o 𝐸 ) ) → ¬ 𝐷 ∈ 𝐵 ) |
| 37 | 36 | pm2.21d | ⊢ ( ( ( ( 𝐴 ∈ On ∧ 𝐴 ≠ ∅ ) ∧ ( 𝐵 ∈ On ∧ 𝐶 ∈ 𝐴 ) ∧ ( 𝐷 ∈ On ∧ 𝐸 ∈ 𝐴 ) ) ∧ ( ( 𝐴 ·o 𝐵 ) +o 𝐶 ) = ( ( 𝐴 ·o 𝐷 ) +o 𝐸 ) ) → ( 𝐷 ∈ 𝐵 → 𝐵 = 𝐷 ) ) |
| 38 | 27 28 37 | 3jaod | ⊢ ( ( ( ( 𝐴 ∈ On ∧ 𝐴 ≠ ∅ ) ∧ ( 𝐵 ∈ On ∧ 𝐶 ∈ 𝐴 ) ∧ ( 𝐷 ∈ On ∧ 𝐸 ∈ 𝐴 ) ) ∧ ( ( 𝐴 ·o 𝐵 ) +o 𝐶 ) = ( ( 𝐴 ·o 𝐷 ) +o 𝐸 ) ) → ( ( 𝐵 ∈ 𝐷 ∨ 𝐵 = 𝐷 ∨ 𝐷 ∈ 𝐵 ) → 𝐵 = 𝐷 ) ) |
| 39 | 8 38 | mpd | ⊢ ( ( ( ( 𝐴 ∈ On ∧ 𝐴 ≠ ∅ ) ∧ ( 𝐵 ∈ On ∧ 𝐶 ∈ 𝐴 ) ∧ ( 𝐷 ∈ On ∧ 𝐸 ∈ 𝐴 ) ) ∧ ( ( 𝐴 ·o 𝐵 ) +o 𝐶 ) = ( ( 𝐴 ·o 𝐷 ) +o 𝐸 ) ) → 𝐵 = 𝐷 ) |
| 40 | onelon | ⊢ ( ( 𝐴 ∈ On ∧ 𝐶 ∈ 𝐴 ) → 𝐶 ∈ On ) | |
| 41 | eloni | ⊢ ( 𝐶 ∈ On → Ord 𝐶 ) | |
| 42 | 40 41 | syl | ⊢ ( ( 𝐴 ∈ On ∧ 𝐶 ∈ 𝐴 ) → Ord 𝐶 ) |
| 43 | 10 32 42 | syl2anc | ⊢ ( ( ( ( 𝐴 ∈ On ∧ 𝐴 ≠ ∅ ) ∧ ( 𝐵 ∈ On ∧ 𝐶 ∈ 𝐴 ) ∧ ( 𝐷 ∈ On ∧ 𝐸 ∈ 𝐴 ) ) ∧ ( ( 𝐴 ·o 𝐵 ) +o 𝐶 ) = ( ( 𝐴 ·o 𝐷 ) +o 𝐸 ) ) → Ord 𝐶 ) |
| 44 | eloni | ⊢ ( 𝐸 ∈ On → Ord 𝐸 ) | |
| 45 | 14 44 | syl | ⊢ ( ( 𝐴 ∈ On ∧ 𝐸 ∈ 𝐴 ) → Ord 𝐸 ) |
| 46 | 10 13 45 | syl2anc | ⊢ ( ( ( ( 𝐴 ∈ On ∧ 𝐴 ≠ ∅ ) ∧ ( 𝐵 ∈ On ∧ 𝐶 ∈ 𝐴 ) ∧ ( 𝐷 ∈ On ∧ 𝐸 ∈ 𝐴 ) ) ∧ ( ( 𝐴 ·o 𝐵 ) +o 𝐶 ) = ( ( 𝐴 ·o 𝐷 ) +o 𝐸 ) ) → Ord 𝐸 ) |
| 47 | ordtri3or | ⊢ ( ( Ord 𝐶 ∧ Ord 𝐸 ) → ( 𝐶 ∈ 𝐸 ∨ 𝐶 = 𝐸 ∨ 𝐸 ∈ 𝐶 ) ) | |
| 48 | 43 46 47 | syl2anc | ⊢ ( ( ( ( 𝐴 ∈ On ∧ 𝐴 ≠ ∅ ) ∧ ( 𝐵 ∈ On ∧ 𝐶 ∈ 𝐴 ) ∧ ( 𝐷 ∈ On ∧ 𝐸 ∈ 𝐴 ) ) ∧ ( ( 𝐴 ·o 𝐵 ) +o 𝐶 ) = ( ( 𝐴 ·o 𝐷 ) +o 𝐸 ) ) → ( 𝐶 ∈ 𝐸 ∨ 𝐶 = 𝐸 ∨ 𝐸 ∈ 𝐶 ) ) |
| 49 | olc | ⊢ ( ( 𝐵 = 𝐷 ∧ 𝐶 ∈ 𝐸 ) → ( 𝐵 ∈ 𝐷 ∨ ( 𝐵 = 𝐷 ∧ 𝐶 ∈ 𝐸 ) ) ) | |
| 50 | 49 24 | syl5 | ⊢ ( ( ( ( 𝐴 ∈ On ∧ 𝐴 ≠ ∅ ) ∧ ( 𝐵 ∈ On ∧ 𝐶 ∈ 𝐴 ) ∧ ( 𝐷 ∈ On ∧ 𝐸 ∈ 𝐴 ) ) ∧ ( ( 𝐴 ·o 𝐵 ) +o 𝐶 ) = ( ( 𝐴 ·o 𝐷 ) +o 𝐸 ) ) → ( ( 𝐵 = 𝐷 ∧ 𝐶 ∈ 𝐸 ) → ( ( 𝐴 ·o 𝐵 ) +o 𝐶 ) ∈ ( ( 𝐴 ·o 𝐷 ) +o 𝐸 ) ) ) |
| 51 | 39 50 | mpand | ⊢ ( ( ( ( 𝐴 ∈ On ∧ 𝐴 ≠ ∅ ) ∧ ( 𝐵 ∈ On ∧ 𝐶 ∈ 𝐴 ) ∧ ( 𝐷 ∈ On ∧ 𝐸 ∈ 𝐴 ) ) ∧ ( ( 𝐴 ·o 𝐵 ) +o 𝐶 ) = ( ( 𝐴 ·o 𝐷 ) +o 𝐸 ) ) → ( 𝐶 ∈ 𝐸 → ( ( 𝐴 ·o 𝐵 ) +o 𝐶 ) ∈ ( ( 𝐴 ·o 𝐷 ) +o 𝐸 ) ) ) |
| 52 | 21 51 | mtod | ⊢ ( ( ( ( 𝐴 ∈ On ∧ 𝐴 ≠ ∅ ) ∧ ( 𝐵 ∈ On ∧ 𝐶 ∈ 𝐴 ) ∧ ( 𝐷 ∈ On ∧ 𝐸 ∈ 𝐴 ) ) ∧ ( ( 𝐴 ·o 𝐵 ) +o 𝐶 ) = ( ( 𝐴 ·o 𝐷 ) +o 𝐸 ) ) → ¬ 𝐶 ∈ 𝐸 ) |
| 53 | 52 | pm2.21d | ⊢ ( ( ( ( 𝐴 ∈ On ∧ 𝐴 ≠ ∅ ) ∧ ( 𝐵 ∈ On ∧ 𝐶 ∈ 𝐴 ) ∧ ( 𝐷 ∈ On ∧ 𝐸 ∈ 𝐴 ) ) ∧ ( ( 𝐴 ·o 𝐵 ) +o 𝐶 ) = ( ( 𝐴 ·o 𝐷 ) +o 𝐸 ) ) → ( 𝐶 ∈ 𝐸 → 𝐶 = 𝐸 ) ) |
| 54 | idd | ⊢ ( ( ( ( 𝐴 ∈ On ∧ 𝐴 ≠ ∅ ) ∧ ( 𝐵 ∈ On ∧ 𝐶 ∈ 𝐴 ) ∧ ( 𝐷 ∈ On ∧ 𝐸 ∈ 𝐴 ) ) ∧ ( ( 𝐴 ·o 𝐵 ) +o 𝐶 ) = ( ( 𝐴 ·o 𝐷 ) +o 𝐸 ) ) → ( 𝐶 = 𝐸 → 𝐶 = 𝐸 ) ) | |
| 55 | 39 | eqcomd | ⊢ ( ( ( ( 𝐴 ∈ On ∧ 𝐴 ≠ ∅ ) ∧ ( 𝐵 ∈ On ∧ 𝐶 ∈ 𝐴 ) ∧ ( 𝐷 ∈ On ∧ 𝐸 ∈ 𝐴 ) ) ∧ ( ( 𝐴 ·o 𝐵 ) +o 𝐶 ) = ( ( 𝐴 ·o 𝐷 ) +o 𝐸 ) ) → 𝐷 = 𝐵 ) |
| 56 | olc | ⊢ ( ( 𝐷 = 𝐵 ∧ 𝐸 ∈ 𝐶 ) → ( 𝐷 ∈ 𝐵 ∨ ( 𝐷 = 𝐵 ∧ 𝐸 ∈ 𝐶 ) ) ) | |
| 57 | 56 34 | syl5 | ⊢ ( ( ( ( 𝐴 ∈ On ∧ 𝐴 ≠ ∅ ) ∧ ( 𝐵 ∈ On ∧ 𝐶 ∈ 𝐴 ) ∧ ( 𝐷 ∈ On ∧ 𝐸 ∈ 𝐴 ) ) ∧ ( ( 𝐴 ·o 𝐵 ) +o 𝐶 ) = ( ( 𝐴 ·o 𝐷 ) +o 𝐸 ) ) → ( ( 𝐷 = 𝐵 ∧ 𝐸 ∈ 𝐶 ) → ( ( 𝐴 ·o 𝐷 ) +o 𝐸 ) ∈ ( ( 𝐴 ·o 𝐵 ) +o 𝐶 ) ) ) |
| 58 | 55 57 | mpand | ⊢ ( ( ( ( 𝐴 ∈ On ∧ 𝐴 ≠ ∅ ) ∧ ( 𝐵 ∈ On ∧ 𝐶 ∈ 𝐴 ) ∧ ( 𝐷 ∈ On ∧ 𝐸 ∈ 𝐴 ) ) ∧ ( ( 𝐴 ·o 𝐵 ) +o 𝐶 ) = ( ( 𝐴 ·o 𝐷 ) +o 𝐸 ) ) → ( 𝐸 ∈ 𝐶 → ( ( 𝐴 ·o 𝐷 ) +o 𝐸 ) ∈ ( ( 𝐴 ·o 𝐵 ) +o 𝐶 ) ) ) |
| 59 | 29 58 | mtod | ⊢ ( ( ( ( 𝐴 ∈ On ∧ 𝐴 ≠ ∅ ) ∧ ( 𝐵 ∈ On ∧ 𝐶 ∈ 𝐴 ) ∧ ( 𝐷 ∈ On ∧ 𝐸 ∈ 𝐴 ) ) ∧ ( ( 𝐴 ·o 𝐵 ) +o 𝐶 ) = ( ( 𝐴 ·o 𝐷 ) +o 𝐸 ) ) → ¬ 𝐸 ∈ 𝐶 ) |
| 60 | 59 | pm2.21d | ⊢ ( ( ( ( 𝐴 ∈ On ∧ 𝐴 ≠ ∅ ) ∧ ( 𝐵 ∈ On ∧ 𝐶 ∈ 𝐴 ) ∧ ( 𝐷 ∈ On ∧ 𝐸 ∈ 𝐴 ) ) ∧ ( ( 𝐴 ·o 𝐵 ) +o 𝐶 ) = ( ( 𝐴 ·o 𝐷 ) +o 𝐸 ) ) → ( 𝐸 ∈ 𝐶 → 𝐶 = 𝐸 ) ) |
| 61 | 53 54 60 | 3jaod | ⊢ ( ( ( ( 𝐴 ∈ On ∧ 𝐴 ≠ ∅ ) ∧ ( 𝐵 ∈ On ∧ 𝐶 ∈ 𝐴 ) ∧ ( 𝐷 ∈ On ∧ 𝐸 ∈ 𝐴 ) ) ∧ ( ( 𝐴 ·o 𝐵 ) +o 𝐶 ) = ( ( 𝐴 ·o 𝐷 ) +o 𝐸 ) ) → ( ( 𝐶 ∈ 𝐸 ∨ 𝐶 = 𝐸 ∨ 𝐸 ∈ 𝐶 ) → 𝐶 = 𝐸 ) ) |
| 62 | 48 61 | mpd | ⊢ ( ( ( ( 𝐴 ∈ On ∧ 𝐴 ≠ ∅ ) ∧ ( 𝐵 ∈ On ∧ 𝐶 ∈ 𝐴 ) ∧ ( 𝐷 ∈ On ∧ 𝐸 ∈ 𝐴 ) ) ∧ ( ( 𝐴 ·o 𝐵 ) +o 𝐶 ) = ( ( 𝐴 ·o 𝐷 ) +o 𝐸 ) ) → 𝐶 = 𝐸 ) |
| 63 | 39 62 | jca | ⊢ ( ( ( ( 𝐴 ∈ On ∧ 𝐴 ≠ ∅ ) ∧ ( 𝐵 ∈ On ∧ 𝐶 ∈ 𝐴 ) ∧ ( 𝐷 ∈ On ∧ 𝐸 ∈ 𝐴 ) ) ∧ ( ( 𝐴 ·o 𝐵 ) +o 𝐶 ) = ( ( 𝐴 ·o 𝐷 ) +o 𝐸 ) ) → ( 𝐵 = 𝐷 ∧ 𝐶 = 𝐸 ) ) |
| 64 | 63 | ex | ⊢ ( ( ( 𝐴 ∈ On ∧ 𝐴 ≠ ∅ ) ∧ ( 𝐵 ∈ On ∧ 𝐶 ∈ 𝐴 ) ∧ ( 𝐷 ∈ On ∧ 𝐸 ∈ 𝐴 ) ) → ( ( ( 𝐴 ·o 𝐵 ) +o 𝐶 ) = ( ( 𝐴 ·o 𝐷 ) +o 𝐸 ) → ( 𝐵 = 𝐷 ∧ 𝐶 = 𝐸 ) ) ) |
| 65 | oveq2 | ⊢ ( 𝐵 = 𝐷 → ( 𝐴 ·o 𝐵 ) = ( 𝐴 ·o 𝐷 ) ) | |
| 66 | id | ⊢ ( 𝐶 = 𝐸 → 𝐶 = 𝐸 ) | |
| 67 | 65 66 | oveqan12d | ⊢ ( ( 𝐵 = 𝐷 ∧ 𝐶 = 𝐸 ) → ( ( 𝐴 ·o 𝐵 ) +o 𝐶 ) = ( ( 𝐴 ·o 𝐷 ) +o 𝐸 ) ) |
| 68 | 64 67 | impbid1 | ⊢ ( ( ( 𝐴 ∈ On ∧ 𝐴 ≠ ∅ ) ∧ ( 𝐵 ∈ On ∧ 𝐶 ∈ 𝐴 ) ∧ ( 𝐷 ∈ On ∧ 𝐸 ∈ 𝐴 ) ) → ( ( ( 𝐴 ·o 𝐵 ) +o 𝐶 ) = ( ( 𝐴 ·o 𝐷 ) +o 𝐸 ) ↔ ( 𝐵 = 𝐷 ∧ 𝐶 = 𝐸 ) ) ) |