This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The union of a set of ordinal numbers is an ordinal number. Theorem 9 of Suppes p. 132. Lemma 2.7 of Schloeder p. 4. (Contributed by NM, 1-Nov-2003)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | ssonuni | ⊢ ( 𝐴 ∈ 𝑉 → ( 𝐴 ⊆ On → ∪ 𝐴 ∈ On ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ssorduni | ⊢ ( 𝐴 ⊆ On → Ord ∪ 𝐴 ) | |
| 2 | uniexg | ⊢ ( 𝐴 ∈ 𝑉 → ∪ 𝐴 ∈ V ) | |
| 3 | elong | ⊢ ( ∪ 𝐴 ∈ V → ( ∪ 𝐴 ∈ On ↔ Ord ∪ 𝐴 ) ) | |
| 4 | 2 3 | syl | ⊢ ( 𝐴 ∈ 𝑉 → ( ∪ 𝐴 ∈ On ↔ Ord ∪ 𝐴 ) ) |
| 5 | 1 4 | imbitrrid | ⊢ ( 𝐴 ∈ 𝑉 → ( 𝐴 ⊆ On → ∪ 𝐴 ∈ On ) ) |