This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for climcnds : bound the condensed series by the original series. (Contributed by Mario Carneiro, 18-Jul-2014) (Proof shortened by AV, 10-Jul-2022)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | climcnds.1 | |- ( ( ph /\ k e. NN ) -> ( F ` k ) e. RR ) |
|
| climcnds.2 | |- ( ( ph /\ k e. NN ) -> 0 <_ ( F ` k ) ) |
||
| climcnds.3 | |- ( ( ph /\ k e. NN ) -> ( F ` ( k + 1 ) ) <_ ( F ` k ) ) |
||
| climcnds.4 | |- ( ( ph /\ n e. NN0 ) -> ( G ` n ) = ( ( 2 ^ n ) x. ( F ` ( 2 ^ n ) ) ) ) |
||
| Assertion | climcndslem2 | |- ( ( ph /\ N e. NN ) -> ( seq 1 ( + , G ) ` N ) <_ ( 2 x. ( seq 1 ( + , F ) ` ( 2 ^ N ) ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | climcnds.1 | |- ( ( ph /\ k e. NN ) -> ( F ` k ) e. RR ) |
|
| 2 | climcnds.2 | |- ( ( ph /\ k e. NN ) -> 0 <_ ( F ` k ) ) |
|
| 3 | climcnds.3 | |- ( ( ph /\ k e. NN ) -> ( F ` ( k + 1 ) ) <_ ( F ` k ) ) |
|
| 4 | climcnds.4 | |- ( ( ph /\ n e. NN0 ) -> ( G ` n ) = ( ( 2 ^ n ) x. ( F ` ( 2 ^ n ) ) ) ) |
|
| 5 | fveq2 | |- ( x = 1 -> ( seq 1 ( + , G ) ` x ) = ( seq 1 ( + , G ) ` 1 ) ) |
|
| 6 | oveq2 | |- ( x = 1 -> ( 2 ^ x ) = ( 2 ^ 1 ) ) |
|
| 7 | 2cn | |- 2 e. CC |
|
| 8 | exp1 | |- ( 2 e. CC -> ( 2 ^ 1 ) = 2 ) |
|
| 9 | 7 8 | ax-mp | |- ( 2 ^ 1 ) = 2 |
| 10 | 6 9 | eqtrdi | |- ( x = 1 -> ( 2 ^ x ) = 2 ) |
| 11 | 10 | fveq2d | |- ( x = 1 -> ( seq 1 ( + , F ) ` ( 2 ^ x ) ) = ( seq 1 ( + , F ) ` 2 ) ) |
| 12 | 11 | oveq2d | |- ( x = 1 -> ( 2 x. ( seq 1 ( + , F ) ` ( 2 ^ x ) ) ) = ( 2 x. ( seq 1 ( + , F ) ` 2 ) ) ) |
| 13 | 5 12 | breq12d | |- ( x = 1 -> ( ( seq 1 ( + , G ) ` x ) <_ ( 2 x. ( seq 1 ( + , F ) ` ( 2 ^ x ) ) ) <-> ( seq 1 ( + , G ) ` 1 ) <_ ( 2 x. ( seq 1 ( + , F ) ` 2 ) ) ) ) |
| 14 | 13 | imbi2d | |- ( x = 1 -> ( ( ph -> ( seq 1 ( + , G ) ` x ) <_ ( 2 x. ( seq 1 ( + , F ) ` ( 2 ^ x ) ) ) ) <-> ( ph -> ( seq 1 ( + , G ) ` 1 ) <_ ( 2 x. ( seq 1 ( + , F ) ` 2 ) ) ) ) ) |
| 15 | fveq2 | |- ( x = j -> ( seq 1 ( + , G ) ` x ) = ( seq 1 ( + , G ) ` j ) ) |
|
| 16 | oveq2 | |- ( x = j -> ( 2 ^ x ) = ( 2 ^ j ) ) |
|
| 17 | 16 | fveq2d | |- ( x = j -> ( seq 1 ( + , F ) ` ( 2 ^ x ) ) = ( seq 1 ( + , F ) ` ( 2 ^ j ) ) ) |
| 18 | 17 | oveq2d | |- ( x = j -> ( 2 x. ( seq 1 ( + , F ) ` ( 2 ^ x ) ) ) = ( 2 x. ( seq 1 ( + , F ) ` ( 2 ^ j ) ) ) ) |
| 19 | 15 18 | breq12d | |- ( x = j -> ( ( seq 1 ( + , G ) ` x ) <_ ( 2 x. ( seq 1 ( + , F ) ` ( 2 ^ x ) ) ) <-> ( seq 1 ( + , G ) ` j ) <_ ( 2 x. ( seq 1 ( + , F ) ` ( 2 ^ j ) ) ) ) ) |
| 20 | 19 | imbi2d | |- ( x = j -> ( ( ph -> ( seq 1 ( + , G ) ` x ) <_ ( 2 x. ( seq 1 ( + , F ) ` ( 2 ^ x ) ) ) ) <-> ( ph -> ( seq 1 ( + , G ) ` j ) <_ ( 2 x. ( seq 1 ( + , F ) ` ( 2 ^ j ) ) ) ) ) ) |
| 21 | fveq2 | |- ( x = ( j + 1 ) -> ( seq 1 ( + , G ) ` x ) = ( seq 1 ( + , G ) ` ( j + 1 ) ) ) |
|
| 22 | oveq2 | |- ( x = ( j + 1 ) -> ( 2 ^ x ) = ( 2 ^ ( j + 1 ) ) ) |
|
| 23 | 22 | fveq2d | |- ( x = ( j + 1 ) -> ( seq 1 ( + , F ) ` ( 2 ^ x ) ) = ( seq 1 ( + , F ) ` ( 2 ^ ( j + 1 ) ) ) ) |
| 24 | 23 | oveq2d | |- ( x = ( j + 1 ) -> ( 2 x. ( seq 1 ( + , F ) ` ( 2 ^ x ) ) ) = ( 2 x. ( seq 1 ( + , F ) ` ( 2 ^ ( j + 1 ) ) ) ) ) |
| 25 | 21 24 | breq12d | |- ( x = ( j + 1 ) -> ( ( seq 1 ( + , G ) ` x ) <_ ( 2 x. ( seq 1 ( + , F ) ` ( 2 ^ x ) ) ) <-> ( seq 1 ( + , G ) ` ( j + 1 ) ) <_ ( 2 x. ( seq 1 ( + , F ) ` ( 2 ^ ( j + 1 ) ) ) ) ) ) |
| 26 | 25 | imbi2d | |- ( x = ( j + 1 ) -> ( ( ph -> ( seq 1 ( + , G ) ` x ) <_ ( 2 x. ( seq 1 ( + , F ) ` ( 2 ^ x ) ) ) ) <-> ( ph -> ( seq 1 ( + , G ) ` ( j + 1 ) ) <_ ( 2 x. ( seq 1 ( + , F ) ` ( 2 ^ ( j + 1 ) ) ) ) ) ) ) |
| 27 | fveq2 | |- ( x = N -> ( seq 1 ( + , G ) ` x ) = ( seq 1 ( + , G ) ` N ) ) |
|
| 28 | oveq2 | |- ( x = N -> ( 2 ^ x ) = ( 2 ^ N ) ) |
|
| 29 | 28 | fveq2d | |- ( x = N -> ( seq 1 ( + , F ) ` ( 2 ^ x ) ) = ( seq 1 ( + , F ) ` ( 2 ^ N ) ) ) |
| 30 | 29 | oveq2d | |- ( x = N -> ( 2 x. ( seq 1 ( + , F ) ` ( 2 ^ x ) ) ) = ( 2 x. ( seq 1 ( + , F ) ` ( 2 ^ N ) ) ) ) |
| 31 | 27 30 | breq12d | |- ( x = N -> ( ( seq 1 ( + , G ) ` x ) <_ ( 2 x. ( seq 1 ( + , F ) ` ( 2 ^ x ) ) ) <-> ( seq 1 ( + , G ) ` N ) <_ ( 2 x. ( seq 1 ( + , F ) ` ( 2 ^ N ) ) ) ) ) |
| 32 | 31 | imbi2d | |- ( x = N -> ( ( ph -> ( seq 1 ( + , G ) ` x ) <_ ( 2 x. ( seq 1 ( + , F ) ` ( 2 ^ x ) ) ) ) <-> ( ph -> ( seq 1 ( + , G ) ` N ) <_ ( 2 x. ( seq 1 ( + , F ) ` ( 2 ^ N ) ) ) ) ) ) |
| 33 | fveq2 | |- ( k = 1 -> ( F ` k ) = ( F ` 1 ) ) |
|
| 34 | 33 | breq2d | |- ( k = 1 -> ( 0 <_ ( F ` k ) <-> 0 <_ ( F ` 1 ) ) ) |
| 35 | 2 | ralrimiva | |- ( ph -> A. k e. NN 0 <_ ( F ` k ) ) |
| 36 | 1nn | |- 1 e. NN |
|
| 37 | 36 | a1i | |- ( ph -> 1 e. NN ) |
| 38 | 34 35 37 | rspcdva | |- ( ph -> 0 <_ ( F ` 1 ) ) |
| 39 | fveq2 | |- ( k = 2 -> ( F ` k ) = ( F ` 2 ) ) |
|
| 40 | 39 | eleq1d | |- ( k = 2 -> ( ( F ` k ) e. RR <-> ( F ` 2 ) e. RR ) ) |
| 41 | 1 | ralrimiva | |- ( ph -> A. k e. NN ( F ` k ) e. RR ) |
| 42 | 2nn | |- 2 e. NN |
|
| 43 | 42 | a1i | |- ( ph -> 2 e. NN ) |
| 44 | 40 41 43 | rspcdva | |- ( ph -> ( F ` 2 ) e. RR ) |
| 45 | 33 | eleq1d | |- ( k = 1 -> ( ( F ` k ) e. RR <-> ( F ` 1 ) e. RR ) ) |
| 46 | 45 41 37 | rspcdva | |- ( ph -> ( F ` 1 ) e. RR ) |
| 47 | 44 46 | addge02d | |- ( ph -> ( 0 <_ ( F ` 1 ) <-> ( F ` 2 ) <_ ( ( F ` 1 ) + ( F ` 2 ) ) ) ) |
| 48 | 38 47 | mpbid | |- ( ph -> ( F ` 2 ) <_ ( ( F ` 1 ) + ( F ` 2 ) ) ) |
| 49 | 46 44 | readdcld | |- ( ph -> ( ( F ` 1 ) + ( F ` 2 ) ) e. RR ) |
| 50 | 43 | nnrpd | |- ( ph -> 2 e. RR+ ) |
| 51 | 44 49 50 | lemul2d | |- ( ph -> ( ( F ` 2 ) <_ ( ( F ` 1 ) + ( F ` 2 ) ) <-> ( 2 x. ( F ` 2 ) ) <_ ( 2 x. ( ( F ` 1 ) + ( F ` 2 ) ) ) ) ) |
| 52 | 48 51 | mpbid | |- ( ph -> ( 2 x. ( F ` 2 ) ) <_ ( 2 x. ( ( F ` 1 ) + ( F ` 2 ) ) ) ) |
| 53 | 1z | |- 1 e. ZZ |
|
| 54 | fveq2 | |- ( n = 1 -> ( G ` n ) = ( G ` 1 ) ) |
|
| 55 | oveq2 | |- ( n = 1 -> ( 2 ^ n ) = ( 2 ^ 1 ) ) |
|
| 56 | 55 9 | eqtrdi | |- ( n = 1 -> ( 2 ^ n ) = 2 ) |
| 57 | 56 | fveq2d | |- ( n = 1 -> ( F ` ( 2 ^ n ) ) = ( F ` 2 ) ) |
| 58 | 56 57 | oveq12d | |- ( n = 1 -> ( ( 2 ^ n ) x. ( F ` ( 2 ^ n ) ) ) = ( 2 x. ( F ` 2 ) ) ) |
| 59 | 54 58 | eqeq12d | |- ( n = 1 -> ( ( G ` n ) = ( ( 2 ^ n ) x. ( F ` ( 2 ^ n ) ) ) <-> ( G ` 1 ) = ( 2 x. ( F ` 2 ) ) ) ) |
| 60 | 4 | ralrimiva | |- ( ph -> A. n e. NN0 ( G ` n ) = ( ( 2 ^ n ) x. ( F ` ( 2 ^ n ) ) ) ) |
| 61 | 1nn0 | |- 1 e. NN0 |
|
| 62 | 61 | a1i | |- ( ph -> 1 e. NN0 ) |
| 63 | 59 60 62 | rspcdva | |- ( ph -> ( G ` 1 ) = ( 2 x. ( F ` 2 ) ) ) |
| 64 | 53 63 | seq1i | |- ( ph -> ( seq 1 ( + , G ) ` 1 ) = ( 2 x. ( F ` 2 ) ) ) |
| 65 | nnuz | |- NN = ( ZZ>= ` 1 ) |
|
| 66 | df-2 | |- 2 = ( 1 + 1 ) |
|
| 67 | eqidd | |- ( ph -> ( F ` 1 ) = ( F ` 1 ) ) |
|
| 68 | 53 67 | seq1i | |- ( ph -> ( seq 1 ( + , F ) ` 1 ) = ( F ` 1 ) ) |
| 69 | eqidd | |- ( ph -> ( F ` 2 ) = ( F ` 2 ) ) |
|
| 70 | 65 37 66 68 69 | seqp1d | |- ( ph -> ( seq 1 ( + , F ) ` 2 ) = ( ( F ` 1 ) + ( F ` 2 ) ) ) |
| 71 | 70 | oveq2d | |- ( ph -> ( 2 x. ( seq 1 ( + , F ) ` 2 ) ) = ( 2 x. ( ( F ` 1 ) + ( F ` 2 ) ) ) ) |
| 72 | 52 64 71 | 3brtr4d | |- ( ph -> ( seq 1 ( + , G ) ` 1 ) <_ ( 2 x. ( seq 1 ( + , F ) ` 2 ) ) ) |
| 73 | fveq2 | |- ( n = ( j + 1 ) -> ( G ` n ) = ( G ` ( j + 1 ) ) ) |
|
| 74 | oveq2 | |- ( n = ( j + 1 ) -> ( 2 ^ n ) = ( 2 ^ ( j + 1 ) ) ) |
|
| 75 | 74 | fveq2d | |- ( n = ( j + 1 ) -> ( F ` ( 2 ^ n ) ) = ( F ` ( 2 ^ ( j + 1 ) ) ) ) |
| 76 | 74 75 | oveq12d | |- ( n = ( j + 1 ) -> ( ( 2 ^ n ) x. ( F ` ( 2 ^ n ) ) ) = ( ( 2 ^ ( j + 1 ) ) x. ( F ` ( 2 ^ ( j + 1 ) ) ) ) ) |
| 77 | 73 76 | eqeq12d | |- ( n = ( j + 1 ) -> ( ( G ` n ) = ( ( 2 ^ n ) x. ( F ` ( 2 ^ n ) ) ) <-> ( G ` ( j + 1 ) ) = ( ( 2 ^ ( j + 1 ) ) x. ( F ` ( 2 ^ ( j + 1 ) ) ) ) ) ) |
| 78 | 60 | adantr | |- ( ( ph /\ j e. NN ) -> A. n e. NN0 ( G ` n ) = ( ( 2 ^ n ) x. ( F ` ( 2 ^ n ) ) ) ) |
| 79 | peano2nn | |- ( j e. NN -> ( j + 1 ) e. NN ) |
|
| 80 | 79 | adantl | |- ( ( ph /\ j e. NN ) -> ( j + 1 ) e. NN ) |
| 81 | 80 | nnnn0d | |- ( ( ph /\ j e. NN ) -> ( j + 1 ) e. NN0 ) |
| 82 | 77 78 81 | rspcdva | |- ( ( ph /\ j e. NN ) -> ( G ` ( j + 1 ) ) = ( ( 2 ^ ( j + 1 ) ) x. ( F ` ( 2 ^ ( j + 1 ) ) ) ) ) |
| 83 | nnnn0 | |- ( j e. NN -> j e. NN0 ) |
|
| 84 | 83 | adantl | |- ( ( ph /\ j e. NN ) -> j e. NN0 ) |
| 85 | expp1 | |- ( ( 2 e. CC /\ j e. NN0 ) -> ( 2 ^ ( j + 1 ) ) = ( ( 2 ^ j ) x. 2 ) ) |
|
| 86 | 7 84 85 | sylancr | |- ( ( ph /\ j e. NN ) -> ( 2 ^ ( j + 1 ) ) = ( ( 2 ^ j ) x. 2 ) ) |
| 87 | nnexpcl | |- ( ( 2 e. NN /\ j e. NN0 ) -> ( 2 ^ j ) e. NN ) |
|
| 88 | 42 83 87 | sylancr | |- ( j e. NN -> ( 2 ^ j ) e. NN ) |
| 89 | 88 | adantl | |- ( ( ph /\ j e. NN ) -> ( 2 ^ j ) e. NN ) |
| 90 | 89 | nncnd | |- ( ( ph /\ j e. NN ) -> ( 2 ^ j ) e. CC ) |
| 91 | mulcom | |- ( ( ( 2 ^ j ) e. CC /\ 2 e. CC ) -> ( ( 2 ^ j ) x. 2 ) = ( 2 x. ( 2 ^ j ) ) ) |
|
| 92 | 90 7 91 | sylancl | |- ( ( ph /\ j e. NN ) -> ( ( 2 ^ j ) x. 2 ) = ( 2 x. ( 2 ^ j ) ) ) |
| 93 | 86 92 | eqtrd | |- ( ( ph /\ j e. NN ) -> ( 2 ^ ( j + 1 ) ) = ( 2 x. ( 2 ^ j ) ) ) |
| 94 | 93 | oveq1d | |- ( ( ph /\ j e. NN ) -> ( ( 2 ^ ( j + 1 ) ) x. ( F ` ( 2 ^ ( j + 1 ) ) ) ) = ( ( 2 x. ( 2 ^ j ) ) x. ( F ` ( 2 ^ ( j + 1 ) ) ) ) ) |
| 95 | 7 | a1i | |- ( ( ph /\ j e. NN ) -> 2 e. CC ) |
| 96 | fveq2 | |- ( k = ( 2 ^ ( j + 1 ) ) -> ( F ` k ) = ( F ` ( 2 ^ ( j + 1 ) ) ) ) |
|
| 97 | 96 | eleq1d | |- ( k = ( 2 ^ ( j + 1 ) ) -> ( ( F ` k ) e. RR <-> ( F ` ( 2 ^ ( j + 1 ) ) ) e. RR ) ) |
| 98 | 41 | adantr | |- ( ( ph /\ j e. NN ) -> A. k e. NN ( F ` k ) e. RR ) |
| 99 | nnexpcl | |- ( ( 2 e. NN /\ ( j + 1 ) e. NN0 ) -> ( 2 ^ ( j + 1 ) ) e. NN ) |
|
| 100 | 42 81 99 | sylancr | |- ( ( ph /\ j e. NN ) -> ( 2 ^ ( j + 1 ) ) e. NN ) |
| 101 | 97 98 100 | rspcdva | |- ( ( ph /\ j e. NN ) -> ( F ` ( 2 ^ ( j + 1 ) ) ) e. RR ) |
| 102 | 101 | recnd | |- ( ( ph /\ j e. NN ) -> ( F ` ( 2 ^ ( j + 1 ) ) ) e. CC ) |
| 103 | 95 90 102 | mulassd | |- ( ( ph /\ j e. NN ) -> ( ( 2 x. ( 2 ^ j ) ) x. ( F ` ( 2 ^ ( j + 1 ) ) ) ) = ( 2 x. ( ( 2 ^ j ) x. ( F ` ( 2 ^ ( j + 1 ) ) ) ) ) ) |
| 104 | 82 94 103 | 3eqtrd | |- ( ( ph /\ j e. NN ) -> ( G ` ( j + 1 ) ) = ( 2 x. ( ( 2 ^ j ) x. ( F ` ( 2 ^ ( j + 1 ) ) ) ) ) ) |
| 105 | 89 | nnnn0d | |- ( ( ph /\ j e. NN ) -> ( 2 ^ j ) e. NN0 ) |
| 106 | hashfz1 | |- ( ( 2 ^ j ) e. NN0 -> ( # ` ( 1 ... ( 2 ^ j ) ) ) = ( 2 ^ j ) ) |
|
| 107 | 105 106 | syl | |- ( ( ph /\ j e. NN ) -> ( # ` ( 1 ... ( 2 ^ j ) ) ) = ( 2 ^ j ) ) |
| 108 | 107 90 | eqeltrd | |- ( ( ph /\ j e. NN ) -> ( # ` ( 1 ... ( 2 ^ j ) ) ) e. CC ) |
| 109 | fzfid | |- ( ( ph /\ j e. NN ) -> ( ( ( 2 ^ j ) + 1 ) ... ( 2 ^ ( j + 1 ) ) ) e. Fin ) |
|
| 110 | hashcl | |- ( ( ( ( 2 ^ j ) + 1 ) ... ( 2 ^ ( j + 1 ) ) ) e. Fin -> ( # ` ( ( ( 2 ^ j ) + 1 ) ... ( 2 ^ ( j + 1 ) ) ) ) e. NN0 ) |
|
| 111 | 109 110 | syl | |- ( ( ph /\ j e. NN ) -> ( # ` ( ( ( 2 ^ j ) + 1 ) ... ( 2 ^ ( j + 1 ) ) ) ) e. NN0 ) |
| 112 | 111 | nn0cnd | |- ( ( ph /\ j e. NN ) -> ( # ` ( ( ( 2 ^ j ) + 1 ) ... ( 2 ^ ( j + 1 ) ) ) ) e. CC ) |
| 113 | simpr | |- ( ( ph /\ j e. NN ) -> j e. NN ) |
|
| 114 | 113 | nnzd | |- ( ( ph /\ j e. NN ) -> j e. ZZ ) |
| 115 | uzid | |- ( j e. ZZ -> j e. ( ZZ>= ` j ) ) |
|
| 116 | peano2uz | |- ( j e. ( ZZ>= ` j ) -> ( j + 1 ) e. ( ZZ>= ` j ) ) |
|
| 117 | 2re | |- 2 e. RR |
|
| 118 | 1le2 | |- 1 <_ 2 |
|
| 119 | leexp2a | |- ( ( 2 e. RR /\ 1 <_ 2 /\ ( j + 1 ) e. ( ZZ>= ` j ) ) -> ( 2 ^ j ) <_ ( 2 ^ ( j + 1 ) ) ) |
|
| 120 | 117 118 119 | mp3an12 | |- ( ( j + 1 ) e. ( ZZ>= ` j ) -> ( 2 ^ j ) <_ ( 2 ^ ( j + 1 ) ) ) |
| 121 | 114 115 116 120 | 4syl | |- ( ( ph /\ j e. NN ) -> ( 2 ^ j ) <_ ( 2 ^ ( j + 1 ) ) ) |
| 122 | 89 65 | eleqtrdi | |- ( ( ph /\ j e. NN ) -> ( 2 ^ j ) e. ( ZZ>= ` 1 ) ) |
| 123 | 100 | nnzd | |- ( ( ph /\ j e. NN ) -> ( 2 ^ ( j + 1 ) ) e. ZZ ) |
| 124 | elfz5 | |- ( ( ( 2 ^ j ) e. ( ZZ>= ` 1 ) /\ ( 2 ^ ( j + 1 ) ) e. ZZ ) -> ( ( 2 ^ j ) e. ( 1 ... ( 2 ^ ( j + 1 ) ) ) <-> ( 2 ^ j ) <_ ( 2 ^ ( j + 1 ) ) ) ) |
|
| 125 | 122 123 124 | syl2anc | |- ( ( ph /\ j e. NN ) -> ( ( 2 ^ j ) e. ( 1 ... ( 2 ^ ( j + 1 ) ) ) <-> ( 2 ^ j ) <_ ( 2 ^ ( j + 1 ) ) ) ) |
| 126 | 121 125 | mpbird | |- ( ( ph /\ j e. NN ) -> ( 2 ^ j ) e. ( 1 ... ( 2 ^ ( j + 1 ) ) ) ) |
| 127 | fzsplit | |- ( ( 2 ^ j ) e. ( 1 ... ( 2 ^ ( j + 1 ) ) ) -> ( 1 ... ( 2 ^ ( j + 1 ) ) ) = ( ( 1 ... ( 2 ^ j ) ) u. ( ( ( 2 ^ j ) + 1 ) ... ( 2 ^ ( j + 1 ) ) ) ) ) |
|
| 128 | 126 127 | syl | |- ( ( ph /\ j e. NN ) -> ( 1 ... ( 2 ^ ( j + 1 ) ) ) = ( ( 1 ... ( 2 ^ j ) ) u. ( ( ( 2 ^ j ) + 1 ) ... ( 2 ^ ( j + 1 ) ) ) ) ) |
| 129 | 128 | fveq2d | |- ( ( ph /\ j e. NN ) -> ( # ` ( 1 ... ( 2 ^ ( j + 1 ) ) ) ) = ( # ` ( ( 1 ... ( 2 ^ j ) ) u. ( ( ( 2 ^ j ) + 1 ) ... ( 2 ^ ( j + 1 ) ) ) ) ) ) |
| 130 | 90 | times2d | |- ( ( ph /\ j e. NN ) -> ( ( 2 ^ j ) x. 2 ) = ( ( 2 ^ j ) + ( 2 ^ j ) ) ) |
| 131 | 86 130 | eqtrd | |- ( ( ph /\ j e. NN ) -> ( 2 ^ ( j + 1 ) ) = ( ( 2 ^ j ) + ( 2 ^ j ) ) ) |
| 132 | 100 | nnnn0d | |- ( ( ph /\ j e. NN ) -> ( 2 ^ ( j + 1 ) ) e. NN0 ) |
| 133 | hashfz1 | |- ( ( 2 ^ ( j + 1 ) ) e. NN0 -> ( # ` ( 1 ... ( 2 ^ ( j + 1 ) ) ) ) = ( 2 ^ ( j + 1 ) ) ) |
|
| 134 | 132 133 | syl | |- ( ( ph /\ j e. NN ) -> ( # ` ( 1 ... ( 2 ^ ( j + 1 ) ) ) ) = ( 2 ^ ( j + 1 ) ) ) |
| 135 | 107 | oveq1d | |- ( ( ph /\ j e. NN ) -> ( ( # ` ( 1 ... ( 2 ^ j ) ) ) + ( 2 ^ j ) ) = ( ( 2 ^ j ) + ( 2 ^ j ) ) ) |
| 136 | 131 134 135 | 3eqtr4d | |- ( ( ph /\ j e. NN ) -> ( # ` ( 1 ... ( 2 ^ ( j + 1 ) ) ) ) = ( ( # ` ( 1 ... ( 2 ^ j ) ) ) + ( 2 ^ j ) ) ) |
| 137 | fzfid | |- ( ( ph /\ j e. NN ) -> ( 1 ... ( 2 ^ j ) ) e. Fin ) |
|
| 138 | 89 | nnred | |- ( ( ph /\ j e. NN ) -> ( 2 ^ j ) e. RR ) |
| 139 | 138 | ltp1d | |- ( ( ph /\ j e. NN ) -> ( 2 ^ j ) < ( ( 2 ^ j ) + 1 ) ) |
| 140 | fzdisj | |- ( ( 2 ^ j ) < ( ( 2 ^ j ) + 1 ) -> ( ( 1 ... ( 2 ^ j ) ) i^i ( ( ( 2 ^ j ) + 1 ) ... ( 2 ^ ( j + 1 ) ) ) ) = (/) ) |
|
| 141 | 139 140 | syl | |- ( ( ph /\ j e. NN ) -> ( ( 1 ... ( 2 ^ j ) ) i^i ( ( ( 2 ^ j ) + 1 ) ... ( 2 ^ ( j + 1 ) ) ) ) = (/) ) |
| 142 | hashun | |- ( ( ( 1 ... ( 2 ^ j ) ) e. Fin /\ ( ( ( 2 ^ j ) + 1 ) ... ( 2 ^ ( j + 1 ) ) ) e. Fin /\ ( ( 1 ... ( 2 ^ j ) ) i^i ( ( ( 2 ^ j ) + 1 ) ... ( 2 ^ ( j + 1 ) ) ) ) = (/) ) -> ( # ` ( ( 1 ... ( 2 ^ j ) ) u. ( ( ( 2 ^ j ) + 1 ) ... ( 2 ^ ( j + 1 ) ) ) ) ) = ( ( # ` ( 1 ... ( 2 ^ j ) ) ) + ( # ` ( ( ( 2 ^ j ) + 1 ) ... ( 2 ^ ( j + 1 ) ) ) ) ) ) |
|
| 143 | 137 109 141 142 | syl3anc | |- ( ( ph /\ j e. NN ) -> ( # ` ( ( 1 ... ( 2 ^ j ) ) u. ( ( ( 2 ^ j ) + 1 ) ... ( 2 ^ ( j + 1 ) ) ) ) ) = ( ( # ` ( 1 ... ( 2 ^ j ) ) ) + ( # ` ( ( ( 2 ^ j ) + 1 ) ... ( 2 ^ ( j + 1 ) ) ) ) ) ) |
| 144 | 129 136 143 | 3eqtr3d | |- ( ( ph /\ j e. NN ) -> ( ( # ` ( 1 ... ( 2 ^ j ) ) ) + ( 2 ^ j ) ) = ( ( # ` ( 1 ... ( 2 ^ j ) ) ) + ( # ` ( ( ( 2 ^ j ) + 1 ) ... ( 2 ^ ( j + 1 ) ) ) ) ) ) |
| 145 | 108 90 112 144 | addcanad | |- ( ( ph /\ j e. NN ) -> ( 2 ^ j ) = ( # ` ( ( ( 2 ^ j ) + 1 ) ... ( 2 ^ ( j + 1 ) ) ) ) ) |
| 146 | 145 | oveq1d | |- ( ( ph /\ j e. NN ) -> ( ( 2 ^ j ) x. ( F ` ( 2 ^ ( j + 1 ) ) ) ) = ( ( # ` ( ( ( 2 ^ j ) + 1 ) ... ( 2 ^ ( j + 1 ) ) ) ) x. ( F ` ( 2 ^ ( j + 1 ) ) ) ) ) |
| 147 | fsumconst | |- ( ( ( ( ( 2 ^ j ) + 1 ) ... ( 2 ^ ( j + 1 ) ) ) e. Fin /\ ( F ` ( 2 ^ ( j + 1 ) ) ) e. CC ) -> sum_ k e. ( ( ( 2 ^ j ) + 1 ) ... ( 2 ^ ( j + 1 ) ) ) ( F ` ( 2 ^ ( j + 1 ) ) ) = ( ( # ` ( ( ( 2 ^ j ) + 1 ) ... ( 2 ^ ( j + 1 ) ) ) ) x. ( F ` ( 2 ^ ( j + 1 ) ) ) ) ) |
|
| 148 | 109 102 147 | syl2anc | |- ( ( ph /\ j e. NN ) -> sum_ k e. ( ( ( 2 ^ j ) + 1 ) ... ( 2 ^ ( j + 1 ) ) ) ( F ` ( 2 ^ ( j + 1 ) ) ) = ( ( # ` ( ( ( 2 ^ j ) + 1 ) ... ( 2 ^ ( j + 1 ) ) ) ) x. ( F ` ( 2 ^ ( j + 1 ) ) ) ) ) |
| 149 | 146 148 | eqtr4d | |- ( ( ph /\ j e. NN ) -> ( ( 2 ^ j ) x. ( F ` ( 2 ^ ( j + 1 ) ) ) ) = sum_ k e. ( ( ( 2 ^ j ) + 1 ) ... ( 2 ^ ( j + 1 ) ) ) ( F ` ( 2 ^ ( j + 1 ) ) ) ) |
| 150 | 101 | adantr | |- ( ( ( ph /\ j e. NN ) /\ k e. ( ( ( 2 ^ j ) + 1 ) ... ( 2 ^ ( j + 1 ) ) ) ) -> ( F ` ( 2 ^ ( j + 1 ) ) ) e. RR ) |
| 151 | simpl | |- ( ( ph /\ j e. NN ) -> ph ) |
|
| 152 | peano2nn | |- ( ( 2 ^ j ) e. NN -> ( ( 2 ^ j ) + 1 ) e. NN ) |
|
| 153 | 89 152 | syl | |- ( ( ph /\ j e. NN ) -> ( ( 2 ^ j ) + 1 ) e. NN ) |
| 154 | elfzuz | |- ( k e. ( ( ( 2 ^ j ) + 1 ) ... ( 2 ^ ( j + 1 ) ) ) -> k e. ( ZZ>= ` ( ( 2 ^ j ) + 1 ) ) ) |
|
| 155 | eluznn | |- ( ( ( ( 2 ^ j ) + 1 ) e. NN /\ k e. ( ZZ>= ` ( ( 2 ^ j ) + 1 ) ) ) -> k e. NN ) |
|
| 156 | 153 154 155 | syl2an | |- ( ( ( ph /\ j e. NN ) /\ k e. ( ( ( 2 ^ j ) + 1 ) ... ( 2 ^ ( j + 1 ) ) ) ) -> k e. NN ) |
| 157 | 151 156 1 | syl2an2r | |- ( ( ( ph /\ j e. NN ) /\ k e. ( ( ( 2 ^ j ) + 1 ) ... ( 2 ^ ( j + 1 ) ) ) ) -> ( F ` k ) e. RR ) |
| 158 | elfzuz3 | |- ( n e. ( ( ( 2 ^ j ) + 1 ) ... ( 2 ^ ( j + 1 ) ) ) -> ( 2 ^ ( j + 1 ) ) e. ( ZZ>= ` n ) ) |
|
| 159 | 158 | adantl | |- ( ( ( ph /\ j e. NN ) /\ n e. ( ( ( 2 ^ j ) + 1 ) ... ( 2 ^ ( j + 1 ) ) ) ) -> ( 2 ^ ( j + 1 ) ) e. ( ZZ>= ` n ) ) |
| 160 | simplll | |- ( ( ( ( ph /\ j e. NN ) /\ n e. ( ( ( 2 ^ j ) + 1 ) ... ( 2 ^ ( j + 1 ) ) ) ) /\ k e. ( n ... ( 2 ^ ( j + 1 ) ) ) ) -> ph ) |
|
| 161 | elfzuz | |- ( n e. ( ( ( 2 ^ j ) + 1 ) ... ( 2 ^ ( j + 1 ) ) ) -> n e. ( ZZ>= ` ( ( 2 ^ j ) + 1 ) ) ) |
|
| 162 | eluznn | |- ( ( ( ( 2 ^ j ) + 1 ) e. NN /\ n e. ( ZZ>= ` ( ( 2 ^ j ) + 1 ) ) ) -> n e. NN ) |
|
| 163 | 153 161 162 | syl2an | |- ( ( ( ph /\ j e. NN ) /\ n e. ( ( ( 2 ^ j ) + 1 ) ... ( 2 ^ ( j + 1 ) ) ) ) -> n e. NN ) |
| 164 | elfzuz | |- ( k e. ( n ... ( 2 ^ ( j + 1 ) ) ) -> k e. ( ZZ>= ` n ) ) |
|
| 165 | eluznn | |- ( ( n e. NN /\ k e. ( ZZ>= ` n ) ) -> k e. NN ) |
|
| 166 | 163 164 165 | syl2an | |- ( ( ( ( ph /\ j e. NN ) /\ n e. ( ( ( 2 ^ j ) + 1 ) ... ( 2 ^ ( j + 1 ) ) ) ) /\ k e. ( n ... ( 2 ^ ( j + 1 ) ) ) ) -> k e. NN ) |
| 167 | 160 166 1 | syl2anc | |- ( ( ( ( ph /\ j e. NN ) /\ n e. ( ( ( 2 ^ j ) + 1 ) ... ( 2 ^ ( j + 1 ) ) ) ) /\ k e. ( n ... ( 2 ^ ( j + 1 ) ) ) ) -> ( F ` k ) e. RR ) |
| 168 | simplll | |- ( ( ( ( ph /\ j e. NN ) /\ n e. ( ( ( 2 ^ j ) + 1 ) ... ( 2 ^ ( j + 1 ) ) ) ) /\ k e. ( n ... ( ( 2 ^ ( j + 1 ) ) - 1 ) ) ) -> ph ) |
|
| 169 | elfzuz | |- ( k e. ( n ... ( ( 2 ^ ( j + 1 ) ) - 1 ) ) -> k e. ( ZZ>= ` n ) ) |
|
| 170 | 163 169 165 | syl2an | |- ( ( ( ( ph /\ j e. NN ) /\ n e. ( ( ( 2 ^ j ) + 1 ) ... ( 2 ^ ( j + 1 ) ) ) ) /\ k e. ( n ... ( ( 2 ^ ( j + 1 ) ) - 1 ) ) ) -> k e. NN ) |
| 171 | 168 170 3 | syl2anc | |- ( ( ( ( ph /\ j e. NN ) /\ n e. ( ( ( 2 ^ j ) + 1 ) ... ( 2 ^ ( j + 1 ) ) ) ) /\ k e. ( n ... ( ( 2 ^ ( j + 1 ) ) - 1 ) ) ) -> ( F ` ( k + 1 ) ) <_ ( F ` k ) ) |
| 172 | 159 167 171 | monoord2 | |- ( ( ( ph /\ j e. NN ) /\ n e. ( ( ( 2 ^ j ) + 1 ) ... ( 2 ^ ( j + 1 ) ) ) ) -> ( F ` ( 2 ^ ( j + 1 ) ) ) <_ ( F ` n ) ) |
| 173 | 172 | ralrimiva | |- ( ( ph /\ j e. NN ) -> A. n e. ( ( ( 2 ^ j ) + 1 ) ... ( 2 ^ ( j + 1 ) ) ) ( F ` ( 2 ^ ( j + 1 ) ) ) <_ ( F ` n ) ) |
| 174 | fveq2 | |- ( n = k -> ( F ` n ) = ( F ` k ) ) |
|
| 175 | 174 | breq2d | |- ( n = k -> ( ( F ` ( 2 ^ ( j + 1 ) ) ) <_ ( F ` n ) <-> ( F ` ( 2 ^ ( j + 1 ) ) ) <_ ( F ` k ) ) ) |
| 176 | 175 | rspccva | |- ( ( A. n e. ( ( ( 2 ^ j ) + 1 ) ... ( 2 ^ ( j + 1 ) ) ) ( F ` ( 2 ^ ( j + 1 ) ) ) <_ ( F ` n ) /\ k e. ( ( ( 2 ^ j ) + 1 ) ... ( 2 ^ ( j + 1 ) ) ) ) -> ( F ` ( 2 ^ ( j + 1 ) ) ) <_ ( F ` k ) ) |
| 177 | 173 176 | sylan | |- ( ( ( ph /\ j e. NN ) /\ k e. ( ( ( 2 ^ j ) + 1 ) ... ( 2 ^ ( j + 1 ) ) ) ) -> ( F ` ( 2 ^ ( j + 1 ) ) ) <_ ( F ` k ) ) |
| 178 | 109 150 157 177 | fsumle | |- ( ( ph /\ j e. NN ) -> sum_ k e. ( ( ( 2 ^ j ) + 1 ) ... ( 2 ^ ( j + 1 ) ) ) ( F ` ( 2 ^ ( j + 1 ) ) ) <_ sum_ k e. ( ( ( 2 ^ j ) + 1 ) ... ( 2 ^ ( j + 1 ) ) ) ( F ` k ) ) |
| 179 | 149 178 | eqbrtrd | |- ( ( ph /\ j e. NN ) -> ( ( 2 ^ j ) x. ( F ` ( 2 ^ ( j + 1 ) ) ) ) <_ sum_ k e. ( ( ( 2 ^ j ) + 1 ) ... ( 2 ^ ( j + 1 ) ) ) ( F ` k ) ) |
| 180 | 138 101 | remulcld | |- ( ( ph /\ j e. NN ) -> ( ( 2 ^ j ) x. ( F ` ( 2 ^ ( j + 1 ) ) ) ) e. RR ) |
| 181 | 109 157 | fsumrecl | |- ( ( ph /\ j e. NN ) -> sum_ k e. ( ( ( 2 ^ j ) + 1 ) ... ( 2 ^ ( j + 1 ) ) ) ( F ` k ) e. RR ) |
| 182 | 2rp | |- 2 e. RR+ |
|
| 183 | 182 | a1i | |- ( ( ph /\ j e. NN ) -> 2 e. RR+ ) |
| 184 | 180 181 183 | lemul2d | |- ( ( ph /\ j e. NN ) -> ( ( ( 2 ^ j ) x. ( F ` ( 2 ^ ( j + 1 ) ) ) ) <_ sum_ k e. ( ( ( 2 ^ j ) + 1 ) ... ( 2 ^ ( j + 1 ) ) ) ( F ` k ) <-> ( 2 x. ( ( 2 ^ j ) x. ( F ` ( 2 ^ ( j + 1 ) ) ) ) ) <_ ( 2 x. sum_ k e. ( ( ( 2 ^ j ) + 1 ) ... ( 2 ^ ( j + 1 ) ) ) ( F ` k ) ) ) ) |
| 185 | 179 184 | mpbid | |- ( ( ph /\ j e. NN ) -> ( 2 x. ( ( 2 ^ j ) x. ( F ` ( 2 ^ ( j + 1 ) ) ) ) ) <_ ( 2 x. sum_ k e. ( ( ( 2 ^ j ) + 1 ) ... ( 2 ^ ( j + 1 ) ) ) ( F ` k ) ) ) |
| 186 | 104 185 | eqbrtrd | |- ( ( ph /\ j e. NN ) -> ( G ` ( j + 1 ) ) <_ ( 2 x. sum_ k e. ( ( ( 2 ^ j ) + 1 ) ... ( 2 ^ ( j + 1 ) ) ) ( F ` k ) ) ) |
| 187 | 1zzd | |- ( ph -> 1 e. ZZ ) |
|
| 188 | nnnn0 | |- ( n e. NN -> n e. NN0 ) |
|
| 189 | simpr | |- ( ( ph /\ n e. NN0 ) -> n e. NN0 ) |
|
| 190 | nnexpcl | |- ( ( 2 e. NN /\ n e. NN0 ) -> ( 2 ^ n ) e. NN ) |
|
| 191 | 42 189 190 | sylancr | |- ( ( ph /\ n e. NN0 ) -> ( 2 ^ n ) e. NN ) |
| 192 | 191 | nnred | |- ( ( ph /\ n e. NN0 ) -> ( 2 ^ n ) e. RR ) |
| 193 | fveq2 | |- ( k = ( 2 ^ n ) -> ( F ` k ) = ( F ` ( 2 ^ n ) ) ) |
|
| 194 | 193 | eleq1d | |- ( k = ( 2 ^ n ) -> ( ( F ` k ) e. RR <-> ( F ` ( 2 ^ n ) ) e. RR ) ) |
| 195 | 41 | adantr | |- ( ( ph /\ n e. NN0 ) -> A. k e. NN ( F ` k ) e. RR ) |
| 196 | 194 195 191 | rspcdva | |- ( ( ph /\ n e. NN0 ) -> ( F ` ( 2 ^ n ) ) e. RR ) |
| 197 | 192 196 | remulcld | |- ( ( ph /\ n e. NN0 ) -> ( ( 2 ^ n ) x. ( F ` ( 2 ^ n ) ) ) e. RR ) |
| 198 | 4 197 | eqeltrd | |- ( ( ph /\ n e. NN0 ) -> ( G ` n ) e. RR ) |
| 199 | 188 198 | sylan2 | |- ( ( ph /\ n e. NN ) -> ( G ` n ) e. RR ) |
| 200 | 65 187 199 | serfre | |- ( ph -> seq 1 ( + , G ) : NN --> RR ) |
| 201 | 200 | ffvelcdmda | |- ( ( ph /\ j e. NN ) -> ( seq 1 ( + , G ) ` j ) e. RR ) |
| 202 | 73 | eleq1d | |- ( n = ( j + 1 ) -> ( ( G ` n ) e. RR <-> ( G ` ( j + 1 ) ) e. RR ) ) |
| 203 | 199 | ralrimiva | |- ( ph -> A. n e. NN ( G ` n ) e. RR ) |
| 204 | 203 | adantr | |- ( ( ph /\ j e. NN ) -> A. n e. NN ( G ` n ) e. RR ) |
| 205 | 202 204 80 | rspcdva | |- ( ( ph /\ j e. NN ) -> ( G ` ( j + 1 ) ) e. RR ) |
| 206 | 65 187 1 | serfre | |- ( ph -> seq 1 ( + , F ) : NN --> RR ) |
| 207 | ffvelcdm | |- ( ( seq 1 ( + , F ) : NN --> RR /\ ( 2 ^ j ) e. NN ) -> ( seq 1 ( + , F ) ` ( 2 ^ j ) ) e. RR ) |
|
| 208 | 206 88 207 | syl2an | |- ( ( ph /\ j e. NN ) -> ( seq 1 ( + , F ) ` ( 2 ^ j ) ) e. RR ) |
| 209 | remulcl | |- ( ( 2 e. RR /\ ( seq 1 ( + , F ) ` ( 2 ^ j ) ) e. RR ) -> ( 2 x. ( seq 1 ( + , F ) ` ( 2 ^ j ) ) ) e. RR ) |
|
| 210 | 117 208 209 | sylancr | |- ( ( ph /\ j e. NN ) -> ( 2 x. ( seq 1 ( + , F ) ` ( 2 ^ j ) ) ) e. RR ) |
| 211 | remulcl | |- ( ( 2 e. RR /\ sum_ k e. ( ( ( 2 ^ j ) + 1 ) ... ( 2 ^ ( j + 1 ) ) ) ( F ` k ) e. RR ) -> ( 2 x. sum_ k e. ( ( ( 2 ^ j ) + 1 ) ... ( 2 ^ ( j + 1 ) ) ) ( F ` k ) ) e. RR ) |
|
| 212 | 117 181 211 | sylancr | |- ( ( ph /\ j e. NN ) -> ( 2 x. sum_ k e. ( ( ( 2 ^ j ) + 1 ) ... ( 2 ^ ( j + 1 ) ) ) ( F ` k ) ) e. RR ) |
| 213 | le2add | |- ( ( ( ( seq 1 ( + , G ) ` j ) e. RR /\ ( G ` ( j + 1 ) ) e. RR ) /\ ( ( 2 x. ( seq 1 ( + , F ) ` ( 2 ^ j ) ) ) e. RR /\ ( 2 x. sum_ k e. ( ( ( 2 ^ j ) + 1 ) ... ( 2 ^ ( j + 1 ) ) ) ( F ` k ) ) e. RR ) ) -> ( ( ( seq 1 ( + , G ) ` j ) <_ ( 2 x. ( seq 1 ( + , F ) ` ( 2 ^ j ) ) ) /\ ( G ` ( j + 1 ) ) <_ ( 2 x. sum_ k e. ( ( ( 2 ^ j ) + 1 ) ... ( 2 ^ ( j + 1 ) ) ) ( F ` k ) ) ) -> ( ( seq 1 ( + , G ) ` j ) + ( G ` ( j + 1 ) ) ) <_ ( ( 2 x. ( seq 1 ( + , F ) ` ( 2 ^ j ) ) ) + ( 2 x. sum_ k e. ( ( ( 2 ^ j ) + 1 ) ... ( 2 ^ ( j + 1 ) ) ) ( F ` k ) ) ) ) ) |
|
| 214 | 201 205 210 212 213 | syl22anc | |- ( ( ph /\ j e. NN ) -> ( ( ( seq 1 ( + , G ) ` j ) <_ ( 2 x. ( seq 1 ( + , F ) ` ( 2 ^ j ) ) ) /\ ( G ` ( j + 1 ) ) <_ ( 2 x. sum_ k e. ( ( ( 2 ^ j ) + 1 ) ... ( 2 ^ ( j + 1 ) ) ) ( F ` k ) ) ) -> ( ( seq 1 ( + , G ) ` j ) + ( G ` ( j + 1 ) ) ) <_ ( ( 2 x. ( seq 1 ( + , F ) ` ( 2 ^ j ) ) ) + ( 2 x. sum_ k e. ( ( ( 2 ^ j ) + 1 ) ... ( 2 ^ ( j + 1 ) ) ) ( F ` k ) ) ) ) ) |
| 215 | 186 214 | mpan2d | |- ( ( ph /\ j e. NN ) -> ( ( seq 1 ( + , G ) ` j ) <_ ( 2 x. ( seq 1 ( + , F ) ` ( 2 ^ j ) ) ) -> ( ( seq 1 ( + , G ) ` j ) + ( G ` ( j + 1 ) ) ) <_ ( ( 2 x. ( seq 1 ( + , F ) ` ( 2 ^ j ) ) ) + ( 2 x. sum_ k e. ( ( ( 2 ^ j ) + 1 ) ... ( 2 ^ ( j + 1 ) ) ) ( F ` k ) ) ) ) ) |
| 216 | 113 65 | eleqtrdi | |- ( ( ph /\ j e. NN ) -> j e. ( ZZ>= ` 1 ) ) |
| 217 | seqp1 | |- ( j e. ( ZZ>= ` 1 ) -> ( seq 1 ( + , G ) ` ( j + 1 ) ) = ( ( seq 1 ( + , G ) ` j ) + ( G ` ( j + 1 ) ) ) ) |
|
| 218 | 216 217 | syl | |- ( ( ph /\ j e. NN ) -> ( seq 1 ( + , G ) ` ( j + 1 ) ) = ( ( seq 1 ( + , G ) ` j ) + ( G ` ( j + 1 ) ) ) ) |
| 219 | fzfid | |- ( ( ph /\ j e. NN ) -> ( 1 ... ( 2 ^ ( j + 1 ) ) ) e. Fin ) |
|
| 220 | elfznn | |- ( k e. ( 1 ... ( 2 ^ ( j + 1 ) ) ) -> k e. NN ) |
|
| 221 | 1 | recnd | |- ( ( ph /\ k e. NN ) -> ( F ` k ) e. CC ) |
| 222 | 151 220 221 | syl2an | |- ( ( ( ph /\ j e. NN ) /\ k e. ( 1 ... ( 2 ^ ( j + 1 ) ) ) ) -> ( F ` k ) e. CC ) |
| 223 | 141 128 219 222 | fsumsplit | |- ( ( ph /\ j e. NN ) -> sum_ k e. ( 1 ... ( 2 ^ ( j + 1 ) ) ) ( F ` k ) = ( sum_ k e. ( 1 ... ( 2 ^ j ) ) ( F ` k ) + sum_ k e. ( ( ( 2 ^ j ) + 1 ) ... ( 2 ^ ( j + 1 ) ) ) ( F ` k ) ) ) |
| 224 | eqidd | |- ( ( ( ph /\ j e. NN ) /\ k e. ( 1 ... ( 2 ^ ( j + 1 ) ) ) ) -> ( F ` k ) = ( F ` k ) ) |
|
| 225 | 100 65 | eleqtrdi | |- ( ( ph /\ j e. NN ) -> ( 2 ^ ( j + 1 ) ) e. ( ZZ>= ` 1 ) ) |
| 226 | 224 225 222 | fsumser | |- ( ( ph /\ j e. NN ) -> sum_ k e. ( 1 ... ( 2 ^ ( j + 1 ) ) ) ( F ` k ) = ( seq 1 ( + , F ) ` ( 2 ^ ( j + 1 ) ) ) ) |
| 227 | eqidd | |- ( ( ( ph /\ j e. NN ) /\ k e. ( 1 ... ( 2 ^ j ) ) ) -> ( F ` k ) = ( F ` k ) ) |
|
| 228 | elfznn | |- ( k e. ( 1 ... ( 2 ^ j ) ) -> k e. NN ) |
|
| 229 | 151 228 221 | syl2an | |- ( ( ( ph /\ j e. NN ) /\ k e. ( 1 ... ( 2 ^ j ) ) ) -> ( F ` k ) e. CC ) |
| 230 | 227 122 229 | fsumser | |- ( ( ph /\ j e. NN ) -> sum_ k e. ( 1 ... ( 2 ^ j ) ) ( F ` k ) = ( seq 1 ( + , F ) ` ( 2 ^ j ) ) ) |
| 231 | 230 | oveq1d | |- ( ( ph /\ j e. NN ) -> ( sum_ k e. ( 1 ... ( 2 ^ j ) ) ( F ` k ) + sum_ k e. ( ( ( 2 ^ j ) + 1 ) ... ( 2 ^ ( j + 1 ) ) ) ( F ` k ) ) = ( ( seq 1 ( + , F ) ` ( 2 ^ j ) ) + sum_ k e. ( ( ( 2 ^ j ) + 1 ) ... ( 2 ^ ( j + 1 ) ) ) ( F ` k ) ) ) |
| 232 | 223 226 231 | 3eqtr3d | |- ( ( ph /\ j e. NN ) -> ( seq 1 ( + , F ) ` ( 2 ^ ( j + 1 ) ) ) = ( ( seq 1 ( + , F ) ` ( 2 ^ j ) ) + sum_ k e. ( ( ( 2 ^ j ) + 1 ) ... ( 2 ^ ( j + 1 ) ) ) ( F ` k ) ) ) |
| 233 | 232 | oveq2d | |- ( ( ph /\ j e. NN ) -> ( 2 x. ( seq 1 ( + , F ) ` ( 2 ^ ( j + 1 ) ) ) ) = ( 2 x. ( ( seq 1 ( + , F ) ` ( 2 ^ j ) ) + sum_ k e. ( ( ( 2 ^ j ) + 1 ) ... ( 2 ^ ( j + 1 ) ) ) ( F ` k ) ) ) ) |
| 234 | 208 | recnd | |- ( ( ph /\ j e. NN ) -> ( seq 1 ( + , F ) ` ( 2 ^ j ) ) e. CC ) |
| 235 | 181 | recnd | |- ( ( ph /\ j e. NN ) -> sum_ k e. ( ( ( 2 ^ j ) + 1 ) ... ( 2 ^ ( j + 1 ) ) ) ( F ` k ) e. CC ) |
| 236 | 95 234 235 | adddid | |- ( ( ph /\ j e. NN ) -> ( 2 x. ( ( seq 1 ( + , F ) ` ( 2 ^ j ) ) + sum_ k e. ( ( ( 2 ^ j ) + 1 ) ... ( 2 ^ ( j + 1 ) ) ) ( F ` k ) ) ) = ( ( 2 x. ( seq 1 ( + , F ) ` ( 2 ^ j ) ) ) + ( 2 x. sum_ k e. ( ( ( 2 ^ j ) + 1 ) ... ( 2 ^ ( j + 1 ) ) ) ( F ` k ) ) ) ) |
| 237 | 233 236 | eqtrd | |- ( ( ph /\ j e. NN ) -> ( 2 x. ( seq 1 ( + , F ) ` ( 2 ^ ( j + 1 ) ) ) ) = ( ( 2 x. ( seq 1 ( + , F ) ` ( 2 ^ j ) ) ) + ( 2 x. sum_ k e. ( ( ( 2 ^ j ) + 1 ) ... ( 2 ^ ( j + 1 ) ) ) ( F ` k ) ) ) ) |
| 238 | 218 237 | breq12d | |- ( ( ph /\ j e. NN ) -> ( ( seq 1 ( + , G ) ` ( j + 1 ) ) <_ ( 2 x. ( seq 1 ( + , F ) ` ( 2 ^ ( j + 1 ) ) ) ) <-> ( ( seq 1 ( + , G ) ` j ) + ( G ` ( j + 1 ) ) ) <_ ( ( 2 x. ( seq 1 ( + , F ) ` ( 2 ^ j ) ) ) + ( 2 x. sum_ k e. ( ( ( 2 ^ j ) + 1 ) ... ( 2 ^ ( j + 1 ) ) ) ( F ` k ) ) ) ) ) |
| 239 | 215 238 | sylibrd | |- ( ( ph /\ j e. NN ) -> ( ( seq 1 ( + , G ) ` j ) <_ ( 2 x. ( seq 1 ( + , F ) ` ( 2 ^ j ) ) ) -> ( seq 1 ( + , G ) ` ( j + 1 ) ) <_ ( 2 x. ( seq 1 ( + , F ) ` ( 2 ^ ( j + 1 ) ) ) ) ) ) |
| 240 | 239 | expcom | |- ( j e. NN -> ( ph -> ( ( seq 1 ( + , G ) ` j ) <_ ( 2 x. ( seq 1 ( + , F ) ` ( 2 ^ j ) ) ) -> ( seq 1 ( + , G ) ` ( j + 1 ) ) <_ ( 2 x. ( seq 1 ( + , F ) ` ( 2 ^ ( j + 1 ) ) ) ) ) ) ) |
| 241 | 240 | a2d | |- ( j e. NN -> ( ( ph -> ( seq 1 ( + , G ) ` j ) <_ ( 2 x. ( seq 1 ( + , F ) ` ( 2 ^ j ) ) ) ) -> ( ph -> ( seq 1 ( + , G ) ` ( j + 1 ) ) <_ ( 2 x. ( seq 1 ( + , F ) ` ( 2 ^ ( j + 1 ) ) ) ) ) ) ) |
| 242 | 14 20 26 32 72 241 | nnind | |- ( N e. NN -> ( ph -> ( seq 1 ( + , G ) ` N ) <_ ( 2 x. ( seq 1 ( + , F ) ` ( 2 ^ N ) ) ) ) ) |
| 243 | 242 | impcom | |- ( ( ph /\ N e. NN ) -> ( seq 1 ( + , G ) ` N ) <_ ( 2 x. ( seq 1 ( + , F ) ` ( 2 ^ N ) ) ) ) |