This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The relation T is a strict order on S (a corollary of wemapso2 ). (Contributed by Mario Carneiro, 28-May-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | cantnfs.s | ⊢ 𝑆 = dom ( 𝐴 CNF 𝐵 ) | |
| cantnfs.a | ⊢ ( 𝜑 → 𝐴 ∈ On ) | ||
| cantnfs.b | ⊢ ( 𝜑 → 𝐵 ∈ On ) | ||
| oemapval.t | ⊢ 𝑇 = { 〈 𝑥 , 𝑦 〉 ∣ ∃ 𝑧 ∈ 𝐵 ( ( 𝑥 ‘ 𝑧 ) ∈ ( 𝑦 ‘ 𝑧 ) ∧ ∀ 𝑤 ∈ 𝐵 ( 𝑧 ∈ 𝑤 → ( 𝑥 ‘ 𝑤 ) = ( 𝑦 ‘ 𝑤 ) ) ) } | ||
| Assertion | oemapso | ⊢ ( 𝜑 → 𝑇 Or 𝑆 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cantnfs.s | ⊢ 𝑆 = dom ( 𝐴 CNF 𝐵 ) | |
| 2 | cantnfs.a | ⊢ ( 𝜑 → 𝐴 ∈ On ) | |
| 3 | cantnfs.b | ⊢ ( 𝜑 → 𝐵 ∈ On ) | |
| 4 | oemapval.t | ⊢ 𝑇 = { 〈 𝑥 , 𝑦 〉 ∣ ∃ 𝑧 ∈ 𝐵 ( ( 𝑥 ‘ 𝑧 ) ∈ ( 𝑦 ‘ 𝑧 ) ∧ ∀ 𝑤 ∈ 𝐵 ( 𝑧 ∈ 𝑤 → ( 𝑥 ‘ 𝑤 ) = ( 𝑦 ‘ 𝑤 ) ) ) } | |
| 5 | eloni | ⊢ ( 𝐵 ∈ On → Ord 𝐵 ) | |
| 6 | ordwe | ⊢ ( Ord 𝐵 → E We 𝐵 ) | |
| 7 | weso | ⊢ ( E We 𝐵 → E Or 𝐵 ) | |
| 8 | 3 5 6 7 | 4syl | ⊢ ( 𝜑 → E Or 𝐵 ) |
| 9 | cnvso | ⊢ ( E Or 𝐵 ↔ ◡ E Or 𝐵 ) | |
| 10 | 8 9 | sylib | ⊢ ( 𝜑 → ◡ E Or 𝐵 ) |
| 11 | eloni | ⊢ ( 𝐴 ∈ On → Ord 𝐴 ) | |
| 12 | ordwe | ⊢ ( Ord 𝐴 → E We 𝐴 ) | |
| 13 | weso | ⊢ ( E We 𝐴 → E Or 𝐴 ) | |
| 14 | 2 11 12 13 | 4syl | ⊢ ( 𝜑 → E Or 𝐴 ) |
| 15 | fvex | ⊢ ( 𝑦 ‘ 𝑧 ) ∈ V | |
| 16 | 15 | epeli | ⊢ ( ( 𝑥 ‘ 𝑧 ) E ( 𝑦 ‘ 𝑧 ) ↔ ( 𝑥 ‘ 𝑧 ) ∈ ( 𝑦 ‘ 𝑧 ) ) |
| 17 | vex | ⊢ 𝑤 ∈ V | |
| 18 | vex | ⊢ 𝑧 ∈ V | |
| 19 | 17 18 | brcnv | ⊢ ( 𝑤 ◡ E 𝑧 ↔ 𝑧 E 𝑤 ) |
| 20 | epel | ⊢ ( 𝑧 E 𝑤 ↔ 𝑧 ∈ 𝑤 ) | |
| 21 | 19 20 | bitri | ⊢ ( 𝑤 ◡ E 𝑧 ↔ 𝑧 ∈ 𝑤 ) |
| 22 | 21 | imbi1i | ⊢ ( ( 𝑤 ◡ E 𝑧 → ( 𝑥 ‘ 𝑤 ) = ( 𝑦 ‘ 𝑤 ) ) ↔ ( 𝑧 ∈ 𝑤 → ( 𝑥 ‘ 𝑤 ) = ( 𝑦 ‘ 𝑤 ) ) ) |
| 23 | 22 | ralbii | ⊢ ( ∀ 𝑤 ∈ 𝐵 ( 𝑤 ◡ E 𝑧 → ( 𝑥 ‘ 𝑤 ) = ( 𝑦 ‘ 𝑤 ) ) ↔ ∀ 𝑤 ∈ 𝐵 ( 𝑧 ∈ 𝑤 → ( 𝑥 ‘ 𝑤 ) = ( 𝑦 ‘ 𝑤 ) ) ) |
| 24 | 16 23 | anbi12i | ⊢ ( ( ( 𝑥 ‘ 𝑧 ) E ( 𝑦 ‘ 𝑧 ) ∧ ∀ 𝑤 ∈ 𝐵 ( 𝑤 ◡ E 𝑧 → ( 𝑥 ‘ 𝑤 ) = ( 𝑦 ‘ 𝑤 ) ) ) ↔ ( ( 𝑥 ‘ 𝑧 ) ∈ ( 𝑦 ‘ 𝑧 ) ∧ ∀ 𝑤 ∈ 𝐵 ( 𝑧 ∈ 𝑤 → ( 𝑥 ‘ 𝑤 ) = ( 𝑦 ‘ 𝑤 ) ) ) ) |
| 25 | 24 | rexbii | ⊢ ( ∃ 𝑧 ∈ 𝐵 ( ( 𝑥 ‘ 𝑧 ) E ( 𝑦 ‘ 𝑧 ) ∧ ∀ 𝑤 ∈ 𝐵 ( 𝑤 ◡ E 𝑧 → ( 𝑥 ‘ 𝑤 ) = ( 𝑦 ‘ 𝑤 ) ) ) ↔ ∃ 𝑧 ∈ 𝐵 ( ( 𝑥 ‘ 𝑧 ) ∈ ( 𝑦 ‘ 𝑧 ) ∧ ∀ 𝑤 ∈ 𝐵 ( 𝑧 ∈ 𝑤 → ( 𝑥 ‘ 𝑤 ) = ( 𝑦 ‘ 𝑤 ) ) ) ) |
| 26 | 25 | opabbii | ⊢ { 〈 𝑥 , 𝑦 〉 ∣ ∃ 𝑧 ∈ 𝐵 ( ( 𝑥 ‘ 𝑧 ) E ( 𝑦 ‘ 𝑧 ) ∧ ∀ 𝑤 ∈ 𝐵 ( 𝑤 ◡ E 𝑧 → ( 𝑥 ‘ 𝑤 ) = ( 𝑦 ‘ 𝑤 ) ) ) } = { 〈 𝑥 , 𝑦 〉 ∣ ∃ 𝑧 ∈ 𝐵 ( ( 𝑥 ‘ 𝑧 ) ∈ ( 𝑦 ‘ 𝑧 ) ∧ ∀ 𝑤 ∈ 𝐵 ( 𝑧 ∈ 𝑤 → ( 𝑥 ‘ 𝑤 ) = ( 𝑦 ‘ 𝑤 ) ) ) } |
| 27 | 4 26 | eqtr4i | ⊢ 𝑇 = { 〈 𝑥 , 𝑦 〉 ∣ ∃ 𝑧 ∈ 𝐵 ( ( 𝑥 ‘ 𝑧 ) E ( 𝑦 ‘ 𝑧 ) ∧ ∀ 𝑤 ∈ 𝐵 ( 𝑤 ◡ E 𝑧 → ( 𝑥 ‘ 𝑤 ) = ( 𝑦 ‘ 𝑤 ) ) ) } |
| 28 | breq1 | ⊢ ( 𝑔 = 𝑥 → ( 𝑔 finSupp ∅ ↔ 𝑥 finSupp ∅ ) ) | |
| 29 | 28 | cbvrabv | ⊢ { 𝑔 ∈ ( 𝐴 ↑m 𝐵 ) ∣ 𝑔 finSupp ∅ } = { 𝑥 ∈ ( 𝐴 ↑m 𝐵 ) ∣ 𝑥 finSupp ∅ } |
| 30 | 27 29 | wemapso2 | ⊢ ( ( 𝐵 ∈ On ∧ ◡ E Or 𝐵 ∧ E Or 𝐴 ) → 𝑇 Or { 𝑔 ∈ ( 𝐴 ↑m 𝐵 ) ∣ 𝑔 finSupp ∅ } ) |
| 31 | 3 10 14 30 | syl3anc | ⊢ ( 𝜑 → 𝑇 Or { 𝑔 ∈ ( 𝐴 ↑m 𝐵 ) ∣ 𝑔 finSupp ∅ } ) |
| 32 | eqid | ⊢ { 𝑔 ∈ ( 𝐴 ↑m 𝐵 ) ∣ 𝑔 finSupp ∅ } = { 𝑔 ∈ ( 𝐴 ↑m 𝐵 ) ∣ 𝑔 finSupp ∅ } | |
| 33 | 32 2 3 | cantnfdm | ⊢ ( 𝜑 → dom ( 𝐴 CNF 𝐵 ) = { 𝑔 ∈ ( 𝐴 ↑m 𝐵 ) ∣ 𝑔 finSupp ∅ } ) |
| 34 | 1 33 | eqtrid | ⊢ ( 𝜑 → 𝑆 = { 𝑔 ∈ ( 𝐴 ↑m 𝐵 ) ∣ 𝑔 finSupp ∅ } ) |
| 35 | soeq2 | ⊢ ( 𝑆 = { 𝑔 ∈ ( 𝐴 ↑m 𝐵 ) ∣ 𝑔 finSupp ∅ } → ( 𝑇 Or 𝑆 ↔ 𝑇 Or { 𝑔 ∈ ( 𝐴 ↑m 𝐵 ) ∣ 𝑔 finSupp ∅ } ) ) | |
| 36 | 34 35 | syl | ⊢ ( 𝜑 → ( 𝑇 Or 𝑆 ↔ 𝑇 Or { 𝑔 ∈ ( 𝐴 ↑m 𝐵 ) ∣ 𝑔 finSupp ∅ } ) ) |
| 37 | 31 36 | mpbird | ⊢ ( 𝜑 → 𝑇 Or 𝑆 ) |