This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The lexicographic order on a function space of ordinals gives a well-ordering with order type equal to the ordinal exponential. This provides an alternate definition of the ordinal exponential. (Contributed by Mario Carneiro, 28-May-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | cantnfs.s | ⊢ 𝑆 = dom ( 𝐴 CNF 𝐵 ) | |
| cantnfs.a | ⊢ ( 𝜑 → 𝐴 ∈ On ) | ||
| cantnfs.b | ⊢ ( 𝜑 → 𝐵 ∈ On ) | ||
| oemapval.t | ⊢ 𝑇 = { 〈 𝑥 , 𝑦 〉 ∣ ∃ 𝑧 ∈ 𝐵 ( ( 𝑥 ‘ 𝑧 ) ∈ ( 𝑦 ‘ 𝑧 ) ∧ ∀ 𝑤 ∈ 𝐵 ( 𝑧 ∈ 𝑤 → ( 𝑥 ‘ 𝑤 ) = ( 𝑦 ‘ 𝑤 ) ) ) } | ||
| Assertion | oemapwe | ⊢ ( 𝜑 → ( 𝑇 We 𝑆 ∧ dom OrdIso ( 𝑇 , 𝑆 ) = ( 𝐴 ↑o 𝐵 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cantnfs.s | ⊢ 𝑆 = dom ( 𝐴 CNF 𝐵 ) | |
| 2 | cantnfs.a | ⊢ ( 𝜑 → 𝐴 ∈ On ) | |
| 3 | cantnfs.b | ⊢ ( 𝜑 → 𝐵 ∈ On ) | |
| 4 | oemapval.t | ⊢ 𝑇 = { 〈 𝑥 , 𝑦 〉 ∣ ∃ 𝑧 ∈ 𝐵 ( ( 𝑥 ‘ 𝑧 ) ∈ ( 𝑦 ‘ 𝑧 ) ∧ ∀ 𝑤 ∈ 𝐵 ( 𝑧 ∈ 𝑤 → ( 𝑥 ‘ 𝑤 ) = ( 𝑦 ‘ 𝑤 ) ) ) } | |
| 5 | oecl | ⊢ ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ) → ( 𝐴 ↑o 𝐵 ) ∈ On ) | |
| 6 | 2 3 5 | syl2anc | ⊢ ( 𝜑 → ( 𝐴 ↑o 𝐵 ) ∈ On ) |
| 7 | eloni | ⊢ ( ( 𝐴 ↑o 𝐵 ) ∈ On → Ord ( 𝐴 ↑o 𝐵 ) ) | |
| 8 | ordwe | ⊢ ( Ord ( 𝐴 ↑o 𝐵 ) → E We ( 𝐴 ↑o 𝐵 ) ) | |
| 9 | 6 7 8 | 3syl | ⊢ ( 𝜑 → E We ( 𝐴 ↑o 𝐵 ) ) |
| 10 | 1 2 3 4 | cantnf | ⊢ ( 𝜑 → ( 𝐴 CNF 𝐵 ) Isom 𝑇 , E ( 𝑆 , ( 𝐴 ↑o 𝐵 ) ) ) |
| 11 | isowe | ⊢ ( ( 𝐴 CNF 𝐵 ) Isom 𝑇 , E ( 𝑆 , ( 𝐴 ↑o 𝐵 ) ) → ( 𝑇 We 𝑆 ↔ E We ( 𝐴 ↑o 𝐵 ) ) ) | |
| 12 | 10 11 | syl | ⊢ ( 𝜑 → ( 𝑇 We 𝑆 ↔ E We ( 𝐴 ↑o 𝐵 ) ) ) |
| 13 | 9 12 | mpbird | ⊢ ( 𝜑 → 𝑇 We 𝑆 ) |
| 14 | 6 7 | syl | ⊢ ( 𝜑 → Ord ( 𝐴 ↑o 𝐵 ) ) |
| 15 | isocnv | ⊢ ( ( 𝐴 CNF 𝐵 ) Isom 𝑇 , E ( 𝑆 , ( 𝐴 ↑o 𝐵 ) ) → ◡ ( 𝐴 CNF 𝐵 ) Isom E , 𝑇 ( ( 𝐴 ↑o 𝐵 ) , 𝑆 ) ) | |
| 16 | 10 15 | syl | ⊢ ( 𝜑 → ◡ ( 𝐴 CNF 𝐵 ) Isom E , 𝑇 ( ( 𝐴 ↑o 𝐵 ) , 𝑆 ) ) |
| 17 | ovex | ⊢ ( 𝐴 CNF 𝐵 ) ∈ V | |
| 18 | 17 | dmex | ⊢ dom ( 𝐴 CNF 𝐵 ) ∈ V |
| 19 | 1 18 | eqeltri | ⊢ 𝑆 ∈ V |
| 20 | exse | ⊢ ( 𝑆 ∈ V → 𝑇 Se 𝑆 ) | |
| 21 | 19 20 | ax-mp | ⊢ 𝑇 Se 𝑆 |
| 22 | eqid | ⊢ OrdIso ( 𝑇 , 𝑆 ) = OrdIso ( 𝑇 , 𝑆 ) | |
| 23 | 22 | oieu | ⊢ ( ( 𝑇 We 𝑆 ∧ 𝑇 Se 𝑆 ) → ( ( Ord ( 𝐴 ↑o 𝐵 ) ∧ ◡ ( 𝐴 CNF 𝐵 ) Isom E , 𝑇 ( ( 𝐴 ↑o 𝐵 ) , 𝑆 ) ) ↔ ( ( 𝐴 ↑o 𝐵 ) = dom OrdIso ( 𝑇 , 𝑆 ) ∧ ◡ ( 𝐴 CNF 𝐵 ) = OrdIso ( 𝑇 , 𝑆 ) ) ) ) |
| 24 | 13 21 23 | sylancl | ⊢ ( 𝜑 → ( ( Ord ( 𝐴 ↑o 𝐵 ) ∧ ◡ ( 𝐴 CNF 𝐵 ) Isom E , 𝑇 ( ( 𝐴 ↑o 𝐵 ) , 𝑆 ) ) ↔ ( ( 𝐴 ↑o 𝐵 ) = dom OrdIso ( 𝑇 , 𝑆 ) ∧ ◡ ( 𝐴 CNF 𝐵 ) = OrdIso ( 𝑇 , 𝑆 ) ) ) ) |
| 25 | 14 16 24 | mpbi2and | ⊢ ( 𝜑 → ( ( 𝐴 ↑o 𝐵 ) = dom OrdIso ( 𝑇 , 𝑆 ) ∧ ◡ ( 𝐴 CNF 𝐵 ) = OrdIso ( 𝑇 , 𝑆 ) ) ) |
| 26 | 25 | simpld | ⊢ ( 𝜑 → ( 𝐴 ↑o 𝐵 ) = dom OrdIso ( 𝑇 , 𝑆 ) ) |
| 27 | 26 | eqcomd | ⊢ ( 𝜑 → dom OrdIso ( 𝑇 , 𝑆 ) = ( 𝐴 ↑o 𝐵 ) ) |
| 28 | 13 27 | jca | ⊢ ( 𝜑 → ( 𝑇 We 𝑆 ∧ dom OrdIso ( 𝑇 , 𝑆 ) = ( 𝐴 ↑o 𝐵 ) ) ) |