This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The CNF function respects extensions of the domain to a larger ordinal. (Contributed by Mario Carneiro, 25-May-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | cantnfs.s | ⊢ 𝑆 = dom ( 𝐴 CNF 𝐵 ) | |
| cantnfs.a | ⊢ ( 𝜑 → 𝐴 ∈ On ) | ||
| cantnfs.b | ⊢ ( 𝜑 → 𝐵 ∈ On ) | ||
| cantnfrescl.d | ⊢ ( 𝜑 → 𝐷 ∈ On ) | ||
| cantnfrescl.b | ⊢ ( 𝜑 → 𝐵 ⊆ 𝐷 ) | ||
| cantnfrescl.x | ⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( 𝐷 ∖ 𝐵 ) ) → 𝑋 = ∅ ) | ||
| cantnfrescl.a | ⊢ ( 𝜑 → ∅ ∈ 𝐴 ) | ||
| cantnfrescl.t | ⊢ 𝑇 = dom ( 𝐴 CNF 𝐷 ) | ||
| cantnfres.m | ⊢ ( 𝜑 → ( 𝑛 ∈ 𝐵 ↦ 𝑋 ) ∈ 𝑆 ) | ||
| Assertion | cantnfres | ⊢ ( 𝜑 → ( ( 𝐴 CNF 𝐵 ) ‘ ( 𝑛 ∈ 𝐵 ↦ 𝑋 ) ) = ( ( 𝐴 CNF 𝐷 ) ‘ ( 𝑛 ∈ 𝐷 ↦ 𝑋 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cantnfs.s | ⊢ 𝑆 = dom ( 𝐴 CNF 𝐵 ) | |
| 2 | cantnfs.a | ⊢ ( 𝜑 → 𝐴 ∈ On ) | |
| 3 | cantnfs.b | ⊢ ( 𝜑 → 𝐵 ∈ On ) | |
| 4 | cantnfrescl.d | ⊢ ( 𝜑 → 𝐷 ∈ On ) | |
| 5 | cantnfrescl.b | ⊢ ( 𝜑 → 𝐵 ⊆ 𝐷 ) | |
| 6 | cantnfrescl.x | ⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( 𝐷 ∖ 𝐵 ) ) → 𝑋 = ∅ ) | |
| 7 | cantnfrescl.a | ⊢ ( 𝜑 → ∅ ∈ 𝐴 ) | |
| 8 | cantnfrescl.t | ⊢ 𝑇 = dom ( 𝐴 CNF 𝐷 ) | |
| 9 | cantnfres.m | ⊢ ( 𝜑 → ( 𝑛 ∈ 𝐵 ↦ 𝑋 ) ∈ 𝑆 ) | |
| 10 | 4 5 6 | extmptsuppeq | ⊢ ( 𝜑 → ( ( 𝑛 ∈ 𝐵 ↦ 𝑋 ) supp ∅ ) = ( ( 𝑛 ∈ 𝐷 ↦ 𝑋 ) supp ∅ ) ) |
| 11 | oieq2 | ⊢ ( ( ( 𝑛 ∈ 𝐵 ↦ 𝑋 ) supp ∅ ) = ( ( 𝑛 ∈ 𝐷 ↦ 𝑋 ) supp ∅ ) → OrdIso ( E , ( ( 𝑛 ∈ 𝐵 ↦ 𝑋 ) supp ∅ ) ) = OrdIso ( E , ( ( 𝑛 ∈ 𝐷 ↦ 𝑋 ) supp ∅ ) ) ) | |
| 12 | 10 11 | syl | ⊢ ( 𝜑 → OrdIso ( E , ( ( 𝑛 ∈ 𝐵 ↦ 𝑋 ) supp ∅ ) ) = OrdIso ( E , ( ( 𝑛 ∈ 𝐷 ↦ 𝑋 ) supp ∅ ) ) ) |
| 13 | 12 | fveq1d | ⊢ ( 𝜑 → ( OrdIso ( E , ( ( 𝑛 ∈ 𝐵 ↦ 𝑋 ) supp ∅ ) ) ‘ 𝑘 ) = ( OrdIso ( E , ( ( 𝑛 ∈ 𝐷 ↦ 𝑋 ) supp ∅ ) ) ‘ 𝑘 ) ) |
| 14 | 13 | 3ad2ant1 | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ dom OrdIso ( E , ( ( 𝑛 ∈ 𝐵 ↦ 𝑋 ) supp ∅ ) ) ∧ 𝑧 ∈ On ) → ( OrdIso ( E , ( ( 𝑛 ∈ 𝐵 ↦ 𝑋 ) supp ∅ ) ) ‘ 𝑘 ) = ( OrdIso ( E , ( ( 𝑛 ∈ 𝐷 ↦ 𝑋 ) supp ∅ ) ) ‘ 𝑘 ) ) |
| 15 | 14 | oveq2d | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ dom OrdIso ( E , ( ( 𝑛 ∈ 𝐵 ↦ 𝑋 ) supp ∅ ) ) ∧ 𝑧 ∈ On ) → ( 𝐴 ↑o ( OrdIso ( E , ( ( 𝑛 ∈ 𝐵 ↦ 𝑋 ) supp ∅ ) ) ‘ 𝑘 ) ) = ( 𝐴 ↑o ( OrdIso ( E , ( ( 𝑛 ∈ 𝐷 ↦ 𝑋 ) supp ∅ ) ) ‘ 𝑘 ) ) ) |
| 16 | suppssdm | ⊢ ( ( 𝑛 ∈ 𝐵 ↦ 𝑋 ) supp ∅ ) ⊆ dom ( 𝑛 ∈ 𝐵 ↦ 𝑋 ) | |
| 17 | eqid | ⊢ ( 𝑛 ∈ 𝐵 ↦ 𝑋 ) = ( 𝑛 ∈ 𝐵 ↦ 𝑋 ) | |
| 18 | 17 | dmmptss | ⊢ dom ( 𝑛 ∈ 𝐵 ↦ 𝑋 ) ⊆ 𝐵 |
| 19 | 18 | a1i | ⊢ ( 𝜑 → dom ( 𝑛 ∈ 𝐵 ↦ 𝑋 ) ⊆ 𝐵 ) |
| 20 | 16 19 | sstrid | ⊢ ( 𝜑 → ( ( 𝑛 ∈ 𝐵 ↦ 𝑋 ) supp ∅ ) ⊆ 𝐵 ) |
| 21 | 20 | 3ad2ant1 | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ dom OrdIso ( E , ( ( 𝑛 ∈ 𝐵 ↦ 𝑋 ) supp ∅ ) ) ∧ 𝑧 ∈ On ) → ( ( 𝑛 ∈ 𝐵 ↦ 𝑋 ) supp ∅ ) ⊆ 𝐵 ) |
| 22 | eqid | ⊢ OrdIso ( E , ( ( 𝑛 ∈ 𝐵 ↦ 𝑋 ) supp ∅ ) ) = OrdIso ( E , ( ( 𝑛 ∈ 𝐵 ↦ 𝑋 ) supp ∅ ) ) | |
| 23 | 22 | oif | ⊢ OrdIso ( E , ( ( 𝑛 ∈ 𝐵 ↦ 𝑋 ) supp ∅ ) ) : dom OrdIso ( E , ( ( 𝑛 ∈ 𝐵 ↦ 𝑋 ) supp ∅ ) ) ⟶ ( ( 𝑛 ∈ 𝐵 ↦ 𝑋 ) supp ∅ ) |
| 24 | 23 | ffvelcdmi | ⊢ ( 𝑘 ∈ dom OrdIso ( E , ( ( 𝑛 ∈ 𝐵 ↦ 𝑋 ) supp ∅ ) ) → ( OrdIso ( E , ( ( 𝑛 ∈ 𝐵 ↦ 𝑋 ) supp ∅ ) ) ‘ 𝑘 ) ∈ ( ( 𝑛 ∈ 𝐵 ↦ 𝑋 ) supp ∅ ) ) |
| 25 | 24 | 3ad2ant2 | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ dom OrdIso ( E , ( ( 𝑛 ∈ 𝐵 ↦ 𝑋 ) supp ∅ ) ) ∧ 𝑧 ∈ On ) → ( OrdIso ( E , ( ( 𝑛 ∈ 𝐵 ↦ 𝑋 ) supp ∅ ) ) ‘ 𝑘 ) ∈ ( ( 𝑛 ∈ 𝐵 ↦ 𝑋 ) supp ∅ ) ) |
| 26 | 21 25 | sseldd | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ dom OrdIso ( E , ( ( 𝑛 ∈ 𝐵 ↦ 𝑋 ) supp ∅ ) ) ∧ 𝑧 ∈ On ) → ( OrdIso ( E , ( ( 𝑛 ∈ 𝐵 ↦ 𝑋 ) supp ∅ ) ) ‘ 𝑘 ) ∈ 𝐵 ) |
| 27 | 26 | fvresd | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ dom OrdIso ( E , ( ( 𝑛 ∈ 𝐵 ↦ 𝑋 ) supp ∅ ) ) ∧ 𝑧 ∈ On ) → ( ( ( 𝑛 ∈ 𝐷 ↦ 𝑋 ) ↾ 𝐵 ) ‘ ( OrdIso ( E , ( ( 𝑛 ∈ 𝐵 ↦ 𝑋 ) supp ∅ ) ) ‘ 𝑘 ) ) = ( ( 𝑛 ∈ 𝐷 ↦ 𝑋 ) ‘ ( OrdIso ( E , ( ( 𝑛 ∈ 𝐵 ↦ 𝑋 ) supp ∅ ) ) ‘ 𝑘 ) ) ) |
| 28 | 5 | 3ad2ant1 | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ dom OrdIso ( E , ( ( 𝑛 ∈ 𝐵 ↦ 𝑋 ) supp ∅ ) ) ∧ 𝑧 ∈ On ) → 𝐵 ⊆ 𝐷 ) |
| 29 | 28 | resmptd | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ dom OrdIso ( E , ( ( 𝑛 ∈ 𝐵 ↦ 𝑋 ) supp ∅ ) ) ∧ 𝑧 ∈ On ) → ( ( 𝑛 ∈ 𝐷 ↦ 𝑋 ) ↾ 𝐵 ) = ( 𝑛 ∈ 𝐵 ↦ 𝑋 ) ) |
| 30 | 29 | fveq1d | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ dom OrdIso ( E , ( ( 𝑛 ∈ 𝐵 ↦ 𝑋 ) supp ∅ ) ) ∧ 𝑧 ∈ On ) → ( ( ( 𝑛 ∈ 𝐷 ↦ 𝑋 ) ↾ 𝐵 ) ‘ ( OrdIso ( E , ( ( 𝑛 ∈ 𝐵 ↦ 𝑋 ) supp ∅ ) ) ‘ 𝑘 ) ) = ( ( 𝑛 ∈ 𝐵 ↦ 𝑋 ) ‘ ( OrdIso ( E , ( ( 𝑛 ∈ 𝐵 ↦ 𝑋 ) supp ∅ ) ) ‘ 𝑘 ) ) ) |
| 31 | 14 | fveq2d | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ dom OrdIso ( E , ( ( 𝑛 ∈ 𝐵 ↦ 𝑋 ) supp ∅ ) ) ∧ 𝑧 ∈ On ) → ( ( 𝑛 ∈ 𝐷 ↦ 𝑋 ) ‘ ( OrdIso ( E , ( ( 𝑛 ∈ 𝐵 ↦ 𝑋 ) supp ∅ ) ) ‘ 𝑘 ) ) = ( ( 𝑛 ∈ 𝐷 ↦ 𝑋 ) ‘ ( OrdIso ( E , ( ( 𝑛 ∈ 𝐷 ↦ 𝑋 ) supp ∅ ) ) ‘ 𝑘 ) ) ) |
| 32 | 27 30 31 | 3eqtr3d | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ dom OrdIso ( E , ( ( 𝑛 ∈ 𝐵 ↦ 𝑋 ) supp ∅ ) ) ∧ 𝑧 ∈ On ) → ( ( 𝑛 ∈ 𝐵 ↦ 𝑋 ) ‘ ( OrdIso ( E , ( ( 𝑛 ∈ 𝐵 ↦ 𝑋 ) supp ∅ ) ) ‘ 𝑘 ) ) = ( ( 𝑛 ∈ 𝐷 ↦ 𝑋 ) ‘ ( OrdIso ( E , ( ( 𝑛 ∈ 𝐷 ↦ 𝑋 ) supp ∅ ) ) ‘ 𝑘 ) ) ) |
| 33 | 15 32 | oveq12d | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ dom OrdIso ( E , ( ( 𝑛 ∈ 𝐵 ↦ 𝑋 ) supp ∅ ) ) ∧ 𝑧 ∈ On ) → ( ( 𝐴 ↑o ( OrdIso ( E , ( ( 𝑛 ∈ 𝐵 ↦ 𝑋 ) supp ∅ ) ) ‘ 𝑘 ) ) ·o ( ( 𝑛 ∈ 𝐵 ↦ 𝑋 ) ‘ ( OrdIso ( E , ( ( 𝑛 ∈ 𝐵 ↦ 𝑋 ) supp ∅ ) ) ‘ 𝑘 ) ) ) = ( ( 𝐴 ↑o ( OrdIso ( E , ( ( 𝑛 ∈ 𝐷 ↦ 𝑋 ) supp ∅ ) ) ‘ 𝑘 ) ) ·o ( ( 𝑛 ∈ 𝐷 ↦ 𝑋 ) ‘ ( OrdIso ( E , ( ( 𝑛 ∈ 𝐷 ↦ 𝑋 ) supp ∅ ) ) ‘ 𝑘 ) ) ) ) |
| 34 | 33 | oveq1d | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ dom OrdIso ( E , ( ( 𝑛 ∈ 𝐵 ↦ 𝑋 ) supp ∅ ) ) ∧ 𝑧 ∈ On ) → ( ( ( 𝐴 ↑o ( OrdIso ( E , ( ( 𝑛 ∈ 𝐵 ↦ 𝑋 ) supp ∅ ) ) ‘ 𝑘 ) ) ·o ( ( 𝑛 ∈ 𝐵 ↦ 𝑋 ) ‘ ( OrdIso ( E , ( ( 𝑛 ∈ 𝐵 ↦ 𝑋 ) supp ∅ ) ) ‘ 𝑘 ) ) ) +o 𝑧 ) = ( ( ( 𝐴 ↑o ( OrdIso ( E , ( ( 𝑛 ∈ 𝐷 ↦ 𝑋 ) supp ∅ ) ) ‘ 𝑘 ) ) ·o ( ( 𝑛 ∈ 𝐷 ↦ 𝑋 ) ‘ ( OrdIso ( E , ( ( 𝑛 ∈ 𝐷 ↦ 𝑋 ) supp ∅ ) ) ‘ 𝑘 ) ) ) +o 𝑧 ) ) |
| 35 | 34 | mpoeq3dva | ⊢ ( 𝜑 → ( 𝑘 ∈ dom OrdIso ( E , ( ( 𝑛 ∈ 𝐵 ↦ 𝑋 ) supp ∅ ) ) , 𝑧 ∈ On ↦ ( ( ( 𝐴 ↑o ( OrdIso ( E , ( ( 𝑛 ∈ 𝐵 ↦ 𝑋 ) supp ∅ ) ) ‘ 𝑘 ) ) ·o ( ( 𝑛 ∈ 𝐵 ↦ 𝑋 ) ‘ ( OrdIso ( E , ( ( 𝑛 ∈ 𝐵 ↦ 𝑋 ) supp ∅ ) ) ‘ 𝑘 ) ) ) +o 𝑧 ) ) = ( 𝑘 ∈ dom OrdIso ( E , ( ( 𝑛 ∈ 𝐵 ↦ 𝑋 ) supp ∅ ) ) , 𝑧 ∈ On ↦ ( ( ( 𝐴 ↑o ( OrdIso ( E , ( ( 𝑛 ∈ 𝐷 ↦ 𝑋 ) supp ∅ ) ) ‘ 𝑘 ) ) ·o ( ( 𝑛 ∈ 𝐷 ↦ 𝑋 ) ‘ ( OrdIso ( E , ( ( 𝑛 ∈ 𝐷 ↦ 𝑋 ) supp ∅ ) ) ‘ 𝑘 ) ) ) +o 𝑧 ) ) ) |
| 36 | 12 | dmeqd | ⊢ ( 𝜑 → dom OrdIso ( E , ( ( 𝑛 ∈ 𝐵 ↦ 𝑋 ) supp ∅ ) ) = dom OrdIso ( E , ( ( 𝑛 ∈ 𝐷 ↦ 𝑋 ) supp ∅ ) ) ) |
| 37 | eqid | ⊢ On = On | |
| 38 | mpoeq12 | ⊢ ( ( dom OrdIso ( E , ( ( 𝑛 ∈ 𝐵 ↦ 𝑋 ) supp ∅ ) ) = dom OrdIso ( E , ( ( 𝑛 ∈ 𝐷 ↦ 𝑋 ) supp ∅ ) ) ∧ On = On ) → ( 𝑘 ∈ dom OrdIso ( E , ( ( 𝑛 ∈ 𝐵 ↦ 𝑋 ) supp ∅ ) ) , 𝑧 ∈ On ↦ ( ( ( 𝐴 ↑o ( OrdIso ( E , ( ( 𝑛 ∈ 𝐷 ↦ 𝑋 ) supp ∅ ) ) ‘ 𝑘 ) ) ·o ( ( 𝑛 ∈ 𝐷 ↦ 𝑋 ) ‘ ( OrdIso ( E , ( ( 𝑛 ∈ 𝐷 ↦ 𝑋 ) supp ∅ ) ) ‘ 𝑘 ) ) ) +o 𝑧 ) ) = ( 𝑘 ∈ dom OrdIso ( E , ( ( 𝑛 ∈ 𝐷 ↦ 𝑋 ) supp ∅ ) ) , 𝑧 ∈ On ↦ ( ( ( 𝐴 ↑o ( OrdIso ( E , ( ( 𝑛 ∈ 𝐷 ↦ 𝑋 ) supp ∅ ) ) ‘ 𝑘 ) ) ·o ( ( 𝑛 ∈ 𝐷 ↦ 𝑋 ) ‘ ( OrdIso ( E , ( ( 𝑛 ∈ 𝐷 ↦ 𝑋 ) supp ∅ ) ) ‘ 𝑘 ) ) ) +o 𝑧 ) ) ) | |
| 39 | 36 37 38 | sylancl | ⊢ ( 𝜑 → ( 𝑘 ∈ dom OrdIso ( E , ( ( 𝑛 ∈ 𝐵 ↦ 𝑋 ) supp ∅ ) ) , 𝑧 ∈ On ↦ ( ( ( 𝐴 ↑o ( OrdIso ( E , ( ( 𝑛 ∈ 𝐷 ↦ 𝑋 ) supp ∅ ) ) ‘ 𝑘 ) ) ·o ( ( 𝑛 ∈ 𝐷 ↦ 𝑋 ) ‘ ( OrdIso ( E , ( ( 𝑛 ∈ 𝐷 ↦ 𝑋 ) supp ∅ ) ) ‘ 𝑘 ) ) ) +o 𝑧 ) ) = ( 𝑘 ∈ dom OrdIso ( E , ( ( 𝑛 ∈ 𝐷 ↦ 𝑋 ) supp ∅ ) ) , 𝑧 ∈ On ↦ ( ( ( 𝐴 ↑o ( OrdIso ( E , ( ( 𝑛 ∈ 𝐷 ↦ 𝑋 ) supp ∅ ) ) ‘ 𝑘 ) ) ·o ( ( 𝑛 ∈ 𝐷 ↦ 𝑋 ) ‘ ( OrdIso ( E , ( ( 𝑛 ∈ 𝐷 ↦ 𝑋 ) supp ∅ ) ) ‘ 𝑘 ) ) ) +o 𝑧 ) ) ) |
| 40 | 35 39 | eqtrd | ⊢ ( 𝜑 → ( 𝑘 ∈ dom OrdIso ( E , ( ( 𝑛 ∈ 𝐵 ↦ 𝑋 ) supp ∅ ) ) , 𝑧 ∈ On ↦ ( ( ( 𝐴 ↑o ( OrdIso ( E , ( ( 𝑛 ∈ 𝐵 ↦ 𝑋 ) supp ∅ ) ) ‘ 𝑘 ) ) ·o ( ( 𝑛 ∈ 𝐵 ↦ 𝑋 ) ‘ ( OrdIso ( E , ( ( 𝑛 ∈ 𝐵 ↦ 𝑋 ) supp ∅ ) ) ‘ 𝑘 ) ) ) +o 𝑧 ) ) = ( 𝑘 ∈ dom OrdIso ( E , ( ( 𝑛 ∈ 𝐷 ↦ 𝑋 ) supp ∅ ) ) , 𝑧 ∈ On ↦ ( ( ( 𝐴 ↑o ( OrdIso ( E , ( ( 𝑛 ∈ 𝐷 ↦ 𝑋 ) supp ∅ ) ) ‘ 𝑘 ) ) ·o ( ( 𝑛 ∈ 𝐷 ↦ 𝑋 ) ‘ ( OrdIso ( E , ( ( 𝑛 ∈ 𝐷 ↦ 𝑋 ) supp ∅ ) ) ‘ 𝑘 ) ) ) +o 𝑧 ) ) ) |
| 41 | eqid | ⊢ ∅ = ∅ | |
| 42 | seqomeq12 | ⊢ ( ( ( 𝑘 ∈ dom OrdIso ( E , ( ( 𝑛 ∈ 𝐵 ↦ 𝑋 ) supp ∅ ) ) , 𝑧 ∈ On ↦ ( ( ( 𝐴 ↑o ( OrdIso ( E , ( ( 𝑛 ∈ 𝐵 ↦ 𝑋 ) supp ∅ ) ) ‘ 𝑘 ) ) ·o ( ( 𝑛 ∈ 𝐵 ↦ 𝑋 ) ‘ ( OrdIso ( E , ( ( 𝑛 ∈ 𝐵 ↦ 𝑋 ) supp ∅ ) ) ‘ 𝑘 ) ) ) +o 𝑧 ) ) = ( 𝑘 ∈ dom OrdIso ( E , ( ( 𝑛 ∈ 𝐷 ↦ 𝑋 ) supp ∅ ) ) , 𝑧 ∈ On ↦ ( ( ( 𝐴 ↑o ( OrdIso ( E , ( ( 𝑛 ∈ 𝐷 ↦ 𝑋 ) supp ∅ ) ) ‘ 𝑘 ) ) ·o ( ( 𝑛 ∈ 𝐷 ↦ 𝑋 ) ‘ ( OrdIso ( E , ( ( 𝑛 ∈ 𝐷 ↦ 𝑋 ) supp ∅ ) ) ‘ 𝑘 ) ) ) +o 𝑧 ) ) ∧ ∅ = ∅ ) → seqω ( ( 𝑘 ∈ dom OrdIso ( E , ( ( 𝑛 ∈ 𝐵 ↦ 𝑋 ) supp ∅ ) ) , 𝑧 ∈ On ↦ ( ( ( 𝐴 ↑o ( OrdIso ( E , ( ( 𝑛 ∈ 𝐵 ↦ 𝑋 ) supp ∅ ) ) ‘ 𝑘 ) ) ·o ( ( 𝑛 ∈ 𝐵 ↦ 𝑋 ) ‘ ( OrdIso ( E , ( ( 𝑛 ∈ 𝐵 ↦ 𝑋 ) supp ∅ ) ) ‘ 𝑘 ) ) ) +o 𝑧 ) ) , ∅ ) = seqω ( ( 𝑘 ∈ dom OrdIso ( E , ( ( 𝑛 ∈ 𝐷 ↦ 𝑋 ) supp ∅ ) ) , 𝑧 ∈ On ↦ ( ( ( 𝐴 ↑o ( OrdIso ( E , ( ( 𝑛 ∈ 𝐷 ↦ 𝑋 ) supp ∅ ) ) ‘ 𝑘 ) ) ·o ( ( 𝑛 ∈ 𝐷 ↦ 𝑋 ) ‘ ( OrdIso ( E , ( ( 𝑛 ∈ 𝐷 ↦ 𝑋 ) supp ∅ ) ) ‘ 𝑘 ) ) ) +o 𝑧 ) ) , ∅ ) ) | |
| 43 | 40 41 42 | sylancl | ⊢ ( 𝜑 → seqω ( ( 𝑘 ∈ dom OrdIso ( E , ( ( 𝑛 ∈ 𝐵 ↦ 𝑋 ) supp ∅ ) ) , 𝑧 ∈ On ↦ ( ( ( 𝐴 ↑o ( OrdIso ( E , ( ( 𝑛 ∈ 𝐵 ↦ 𝑋 ) supp ∅ ) ) ‘ 𝑘 ) ) ·o ( ( 𝑛 ∈ 𝐵 ↦ 𝑋 ) ‘ ( OrdIso ( E , ( ( 𝑛 ∈ 𝐵 ↦ 𝑋 ) supp ∅ ) ) ‘ 𝑘 ) ) ) +o 𝑧 ) ) , ∅ ) = seqω ( ( 𝑘 ∈ dom OrdIso ( E , ( ( 𝑛 ∈ 𝐷 ↦ 𝑋 ) supp ∅ ) ) , 𝑧 ∈ On ↦ ( ( ( 𝐴 ↑o ( OrdIso ( E , ( ( 𝑛 ∈ 𝐷 ↦ 𝑋 ) supp ∅ ) ) ‘ 𝑘 ) ) ·o ( ( 𝑛 ∈ 𝐷 ↦ 𝑋 ) ‘ ( OrdIso ( E , ( ( 𝑛 ∈ 𝐷 ↦ 𝑋 ) supp ∅ ) ) ‘ 𝑘 ) ) ) +o 𝑧 ) ) , ∅ ) ) |
| 44 | 43 36 | fveq12d | ⊢ ( 𝜑 → ( seqω ( ( 𝑘 ∈ dom OrdIso ( E , ( ( 𝑛 ∈ 𝐵 ↦ 𝑋 ) supp ∅ ) ) , 𝑧 ∈ On ↦ ( ( ( 𝐴 ↑o ( OrdIso ( E , ( ( 𝑛 ∈ 𝐵 ↦ 𝑋 ) supp ∅ ) ) ‘ 𝑘 ) ) ·o ( ( 𝑛 ∈ 𝐵 ↦ 𝑋 ) ‘ ( OrdIso ( E , ( ( 𝑛 ∈ 𝐵 ↦ 𝑋 ) supp ∅ ) ) ‘ 𝑘 ) ) ) +o 𝑧 ) ) , ∅ ) ‘ dom OrdIso ( E , ( ( 𝑛 ∈ 𝐵 ↦ 𝑋 ) supp ∅ ) ) ) = ( seqω ( ( 𝑘 ∈ dom OrdIso ( E , ( ( 𝑛 ∈ 𝐷 ↦ 𝑋 ) supp ∅ ) ) , 𝑧 ∈ On ↦ ( ( ( 𝐴 ↑o ( OrdIso ( E , ( ( 𝑛 ∈ 𝐷 ↦ 𝑋 ) supp ∅ ) ) ‘ 𝑘 ) ) ·o ( ( 𝑛 ∈ 𝐷 ↦ 𝑋 ) ‘ ( OrdIso ( E , ( ( 𝑛 ∈ 𝐷 ↦ 𝑋 ) supp ∅ ) ) ‘ 𝑘 ) ) ) +o 𝑧 ) ) , ∅ ) ‘ dom OrdIso ( E , ( ( 𝑛 ∈ 𝐷 ↦ 𝑋 ) supp ∅ ) ) ) ) |
| 45 | eqid | ⊢ seqω ( ( 𝑘 ∈ V , 𝑧 ∈ V ↦ ( ( ( 𝐴 ↑o ( OrdIso ( E , ( ( 𝑛 ∈ 𝐵 ↦ 𝑋 ) supp ∅ ) ) ‘ 𝑘 ) ) ·o ( ( 𝑛 ∈ 𝐵 ↦ 𝑋 ) ‘ ( OrdIso ( E , ( ( 𝑛 ∈ 𝐵 ↦ 𝑋 ) supp ∅ ) ) ‘ 𝑘 ) ) ) +o 𝑧 ) ) , ∅ ) = seqω ( ( 𝑘 ∈ V , 𝑧 ∈ V ↦ ( ( ( 𝐴 ↑o ( OrdIso ( E , ( ( 𝑛 ∈ 𝐵 ↦ 𝑋 ) supp ∅ ) ) ‘ 𝑘 ) ) ·o ( ( 𝑛 ∈ 𝐵 ↦ 𝑋 ) ‘ ( OrdIso ( E , ( ( 𝑛 ∈ 𝐵 ↦ 𝑋 ) supp ∅ ) ) ‘ 𝑘 ) ) ) +o 𝑧 ) ) , ∅ ) | |
| 46 | 1 2 3 22 9 45 | cantnfval2 | ⊢ ( 𝜑 → ( ( 𝐴 CNF 𝐵 ) ‘ ( 𝑛 ∈ 𝐵 ↦ 𝑋 ) ) = ( seqω ( ( 𝑘 ∈ dom OrdIso ( E , ( ( 𝑛 ∈ 𝐵 ↦ 𝑋 ) supp ∅ ) ) , 𝑧 ∈ On ↦ ( ( ( 𝐴 ↑o ( OrdIso ( E , ( ( 𝑛 ∈ 𝐵 ↦ 𝑋 ) supp ∅ ) ) ‘ 𝑘 ) ) ·o ( ( 𝑛 ∈ 𝐵 ↦ 𝑋 ) ‘ ( OrdIso ( E , ( ( 𝑛 ∈ 𝐵 ↦ 𝑋 ) supp ∅ ) ) ‘ 𝑘 ) ) ) +o 𝑧 ) ) , ∅ ) ‘ dom OrdIso ( E , ( ( 𝑛 ∈ 𝐵 ↦ 𝑋 ) supp ∅ ) ) ) ) |
| 47 | eqid | ⊢ OrdIso ( E , ( ( 𝑛 ∈ 𝐷 ↦ 𝑋 ) supp ∅ ) ) = OrdIso ( E , ( ( 𝑛 ∈ 𝐷 ↦ 𝑋 ) supp ∅ ) ) | |
| 48 | 1 2 3 4 5 6 7 8 | cantnfrescl | ⊢ ( 𝜑 → ( ( 𝑛 ∈ 𝐵 ↦ 𝑋 ) ∈ 𝑆 ↔ ( 𝑛 ∈ 𝐷 ↦ 𝑋 ) ∈ 𝑇 ) ) |
| 49 | 9 48 | mpbid | ⊢ ( 𝜑 → ( 𝑛 ∈ 𝐷 ↦ 𝑋 ) ∈ 𝑇 ) |
| 50 | eqid | ⊢ seqω ( ( 𝑘 ∈ V , 𝑧 ∈ V ↦ ( ( ( 𝐴 ↑o ( OrdIso ( E , ( ( 𝑛 ∈ 𝐷 ↦ 𝑋 ) supp ∅ ) ) ‘ 𝑘 ) ) ·o ( ( 𝑛 ∈ 𝐷 ↦ 𝑋 ) ‘ ( OrdIso ( E , ( ( 𝑛 ∈ 𝐷 ↦ 𝑋 ) supp ∅ ) ) ‘ 𝑘 ) ) ) +o 𝑧 ) ) , ∅ ) = seqω ( ( 𝑘 ∈ V , 𝑧 ∈ V ↦ ( ( ( 𝐴 ↑o ( OrdIso ( E , ( ( 𝑛 ∈ 𝐷 ↦ 𝑋 ) supp ∅ ) ) ‘ 𝑘 ) ) ·o ( ( 𝑛 ∈ 𝐷 ↦ 𝑋 ) ‘ ( OrdIso ( E , ( ( 𝑛 ∈ 𝐷 ↦ 𝑋 ) supp ∅ ) ) ‘ 𝑘 ) ) ) +o 𝑧 ) ) , ∅ ) | |
| 51 | 8 2 4 47 49 50 | cantnfval2 | ⊢ ( 𝜑 → ( ( 𝐴 CNF 𝐷 ) ‘ ( 𝑛 ∈ 𝐷 ↦ 𝑋 ) ) = ( seqω ( ( 𝑘 ∈ dom OrdIso ( E , ( ( 𝑛 ∈ 𝐷 ↦ 𝑋 ) supp ∅ ) ) , 𝑧 ∈ On ↦ ( ( ( 𝐴 ↑o ( OrdIso ( E , ( ( 𝑛 ∈ 𝐷 ↦ 𝑋 ) supp ∅ ) ) ‘ 𝑘 ) ) ·o ( ( 𝑛 ∈ 𝐷 ↦ 𝑋 ) ‘ ( OrdIso ( E , ( ( 𝑛 ∈ 𝐷 ↦ 𝑋 ) supp ∅ ) ) ‘ 𝑘 ) ) ) +o 𝑧 ) ) , ∅ ) ‘ dom OrdIso ( E , ( ( 𝑛 ∈ 𝐷 ↦ 𝑋 ) supp ∅ ) ) ) ) |
| 52 | 44 46 51 | 3eqtr4d | ⊢ ( 𝜑 → ( ( 𝐴 CNF 𝐵 ) ‘ ( 𝑛 ∈ 𝐵 ↦ 𝑋 ) ) = ( ( 𝐴 CNF 𝐷 ) ‘ ( 𝑛 ∈ 𝐷 ↦ 𝑋 ) ) ) |