This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The Cantor Normal Form theorem. The function ( A CNF B ) , which maps a finitely supported function from B to A to the sum ( ( A ^o f ( a 1 ) ) o. a 1 ) +o ( ( A ^o f ( a 2 ) ) o. a 2 ) +o ... over all indices a < B such that f ( a ) is nonzero, is an order isomorphism from the ordering T of finitely supported functions to the set ( A ^o B ) under the natural order. Setting A = _om and letting B be arbitrarily large, the surjectivity of this function implies that every ordinal has a Cantor normal form (and injectivity, together with coherence cantnfres , implies that such a representation is unique). (Contributed by Mario Carneiro, 28-May-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | cantnfs.s | |- S = dom ( A CNF B ) |
|
| cantnfs.a | |- ( ph -> A e. On ) |
||
| cantnfs.b | |- ( ph -> B e. On ) |
||
| oemapval.t | |- T = { <. x , y >. | E. z e. B ( ( x ` z ) e. ( y ` z ) /\ A. w e. B ( z e. w -> ( x ` w ) = ( y ` w ) ) ) } |
||
| Assertion | cantnf | |- ( ph -> ( A CNF B ) Isom T , _E ( S , ( A ^o B ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cantnfs.s | |- S = dom ( A CNF B ) |
|
| 2 | cantnfs.a | |- ( ph -> A e. On ) |
|
| 3 | cantnfs.b | |- ( ph -> B e. On ) |
|
| 4 | oemapval.t | |- T = { <. x , y >. | E. z e. B ( ( x ` z ) e. ( y ` z ) /\ A. w e. B ( z e. w -> ( x ` w ) = ( y ` w ) ) ) } |
|
| 5 | 1 2 3 4 | oemapso | |- ( ph -> T Or S ) |
| 6 | oecl | |- ( ( A e. On /\ B e. On ) -> ( A ^o B ) e. On ) |
|
| 7 | 2 3 6 | syl2anc | |- ( ph -> ( A ^o B ) e. On ) |
| 8 | eloni | |- ( ( A ^o B ) e. On -> Ord ( A ^o B ) ) |
|
| 9 | 7 8 | syl | |- ( ph -> Ord ( A ^o B ) ) |
| 10 | ordwe | |- ( Ord ( A ^o B ) -> _E We ( A ^o B ) ) |
|
| 11 | weso | |- ( _E We ( A ^o B ) -> _E Or ( A ^o B ) ) |
|
| 12 | sopo | |- ( _E Or ( A ^o B ) -> _E Po ( A ^o B ) ) |
|
| 13 | 9 10 11 12 | 4syl | |- ( ph -> _E Po ( A ^o B ) ) |
| 14 | 1 2 3 | cantnff | |- ( ph -> ( A CNF B ) : S --> ( A ^o B ) ) |
| 15 | 14 | frnd | |- ( ph -> ran ( A CNF B ) C_ ( A ^o B ) ) |
| 16 | onss | |- ( ( A ^o B ) e. On -> ( A ^o B ) C_ On ) |
|
| 17 | 7 16 | syl | |- ( ph -> ( A ^o B ) C_ On ) |
| 18 | 17 | sseld | |- ( ph -> ( t e. ( A ^o B ) -> t e. On ) ) |
| 19 | eleq1w | |- ( t = y -> ( t e. ( A ^o B ) <-> y e. ( A ^o B ) ) ) |
|
| 20 | eleq1w | |- ( t = y -> ( t e. ran ( A CNF B ) <-> y e. ran ( A CNF B ) ) ) |
|
| 21 | 19 20 | imbi12d | |- ( t = y -> ( ( t e. ( A ^o B ) -> t e. ran ( A CNF B ) ) <-> ( y e. ( A ^o B ) -> y e. ran ( A CNF B ) ) ) ) |
| 22 | 21 | imbi2d | |- ( t = y -> ( ( ph -> ( t e. ( A ^o B ) -> t e. ran ( A CNF B ) ) ) <-> ( ph -> ( y e. ( A ^o B ) -> y e. ran ( A CNF B ) ) ) ) ) |
| 23 | r19.21v | |- ( A. y e. t ( ph -> ( y e. ( A ^o B ) -> y e. ran ( A CNF B ) ) ) <-> ( ph -> A. y e. t ( y e. ( A ^o B ) -> y e. ran ( A CNF B ) ) ) ) |
|
| 24 | ordelss | |- ( ( Ord ( A ^o B ) /\ t e. ( A ^o B ) ) -> t C_ ( A ^o B ) ) |
|
| 25 | 9 24 | sylan | |- ( ( ph /\ t e. ( A ^o B ) ) -> t C_ ( A ^o B ) ) |
| 26 | 25 | sselda | |- ( ( ( ph /\ t e. ( A ^o B ) ) /\ y e. t ) -> y e. ( A ^o B ) ) |
| 27 | pm5.5 | |- ( y e. ( A ^o B ) -> ( ( y e. ( A ^o B ) -> y e. ran ( A CNF B ) ) <-> y e. ran ( A CNF B ) ) ) |
|
| 28 | 26 27 | syl | |- ( ( ( ph /\ t e. ( A ^o B ) ) /\ y e. t ) -> ( ( y e. ( A ^o B ) -> y e. ran ( A CNF B ) ) <-> y e. ran ( A CNF B ) ) ) |
| 29 | 28 | ralbidva | |- ( ( ph /\ t e. ( A ^o B ) ) -> ( A. y e. t ( y e. ( A ^o B ) -> y e. ran ( A CNF B ) ) <-> A. y e. t y e. ran ( A CNF B ) ) ) |
| 30 | dfss3 | |- ( t C_ ran ( A CNF B ) <-> A. y e. t y e. ran ( A CNF B ) ) |
|
| 31 | 29 30 | bitr4di | |- ( ( ph /\ t e. ( A ^o B ) ) -> ( A. y e. t ( y e. ( A ^o B ) -> y e. ran ( A CNF B ) ) <-> t C_ ran ( A CNF B ) ) ) |
| 32 | eleq1 | |- ( t = (/) -> ( t e. ran ( A CNF B ) <-> (/) e. ran ( A CNF B ) ) ) |
|
| 33 | 2 | adantr | |- ( ( ph /\ ( t e. ( A ^o B ) /\ t C_ ran ( A CNF B ) ) ) -> A e. On ) |
| 34 | 33 | adantr | |- ( ( ( ph /\ ( t e. ( A ^o B ) /\ t C_ ran ( A CNF B ) ) ) /\ t =/= (/) ) -> A e. On ) |
| 35 | 3 | adantr | |- ( ( ph /\ ( t e. ( A ^o B ) /\ t C_ ran ( A CNF B ) ) ) -> B e. On ) |
| 36 | 35 | adantr | |- ( ( ( ph /\ ( t e. ( A ^o B ) /\ t C_ ran ( A CNF B ) ) ) /\ t =/= (/) ) -> B e. On ) |
| 37 | simplrl | |- ( ( ( ph /\ ( t e. ( A ^o B ) /\ t C_ ran ( A CNF B ) ) ) /\ t =/= (/) ) -> t e. ( A ^o B ) ) |
|
| 38 | simplrr | |- ( ( ( ph /\ ( t e. ( A ^o B ) /\ t C_ ran ( A CNF B ) ) ) /\ t =/= (/) ) -> t C_ ran ( A CNF B ) ) |
|
| 39 | 7 | adantr | |- ( ( ph /\ ( t e. ( A ^o B ) /\ t C_ ran ( A CNF B ) ) ) -> ( A ^o B ) e. On ) |
| 40 | simprl | |- ( ( ph /\ ( t e. ( A ^o B ) /\ t C_ ran ( A CNF B ) ) ) -> t e. ( A ^o B ) ) |
|
| 41 | onelon | |- ( ( ( A ^o B ) e. On /\ t e. ( A ^o B ) ) -> t e. On ) |
|
| 42 | 39 40 41 | syl2anc | |- ( ( ph /\ ( t e. ( A ^o B ) /\ t C_ ran ( A CNF B ) ) ) -> t e. On ) |
| 43 | on0eln0 | |- ( t e. On -> ( (/) e. t <-> t =/= (/) ) ) |
|
| 44 | 42 43 | syl | |- ( ( ph /\ ( t e. ( A ^o B ) /\ t C_ ran ( A CNF B ) ) ) -> ( (/) e. t <-> t =/= (/) ) ) |
| 45 | 44 | biimpar | |- ( ( ( ph /\ ( t e. ( A ^o B ) /\ t C_ ran ( A CNF B ) ) ) /\ t =/= (/) ) -> (/) e. t ) |
| 46 | eqid | |- U. |^| { c e. On | t e. ( A ^o c ) } = U. |^| { c e. On | t e. ( A ^o c ) } |
|
| 47 | eqid | |- ( iota d E. a e. On E. b e. ( A ^o U. |^| { c e. On | t e. ( A ^o c ) } ) ( d = <. a , b >. /\ ( ( ( A ^o U. |^| { c e. On | t e. ( A ^o c ) } ) .o a ) +o b ) = t ) ) = ( iota d E. a e. On E. b e. ( A ^o U. |^| { c e. On | t e. ( A ^o c ) } ) ( d = <. a , b >. /\ ( ( ( A ^o U. |^| { c e. On | t e. ( A ^o c ) } ) .o a ) +o b ) = t ) ) |
|
| 48 | eqid | |- ( 1st ` ( iota d E. a e. On E. b e. ( A ^o U. |^| { c e. On | t e. ( A ^o c ) } ) ( d = <. a , b >. /\ ( ( ( A ^o U. |^| { c e. On | t e. ( A ^o c ) } ) .o a ) +o b ) = t ) ) ) = ( 1st ` ( iota d E. a e. On E. b e. ( A ^o U. |^| { c e. On | t e. ( A ^o c ) } ) ( d = <. a , b >. /\ ( ( ( A ^o U. |^| { c e. On | t e. ( A ^o c ) } ) .o a ) +o b ) = t ) ) ) |
|
| 49 | eqid | |- ( 2nd ` ( iota d E. a e. On E. b e. ( A ^o U. |^| { c e. On | t e. ( A ^o c ) } ) ( d = <. a , b >. /\ ( ( ( A ^o U. |^| { c e. On | t e. ( A ^o c ) } ) .o a ) +o b ) = t ) ) ) = ( 2nd ` ( iota d E. a e. On E. b e. ( A ^o U. |^| { c e. On | t e. ( A ^o c ) } ) ( d = <. a , b >. /\ ( ( ( A ^o U. |^| { c e. On | t e. ( A ^o c ) } ) .o a ) +o b ) = t ) ) ) |
|
| 50 | 1 34 36 4 37 38 45 46 47 48 49 | cantnflem4 | |- ( ( ( ph /\ ( t e. ( A ^o B ) /\ t C_ ran ( A CNF B ) ) ) /\ t =/= (/) ) -> t e. ran ( A CNF B ) ) |
| 51 | fczsupp0 | |- ( ( B X. { (/) } ) supp (/) ) = (/) |
|
| 52 | 51 | eqcomi | |- (/) = ( ( B X. { (/) } ) supp (/) ) |
| 53 | oieq2 | |- ( (/) = ( ( B X. { (/) } ) supp (/) ) -> OrdIso ( _E , (/) ) = OrdIso ( _E , ( ( B X. { (/) } ) supp (/) ) ) ) |
|
| 54 | 52 53 | ax-mp | |- OrdIso ( _E , (/) ) = OrdIso ( _E , ( ( B X. { (/) } ) supp (/) ) ) |
| 55 | ne0i | |- ( t e. ( A ^o B ) -> ( A ^o B ) =/= (/) ) |
|
| 56 | 55 | ad2antrl | |- ( ( ph /\ ( t e. ( A ^o B ) /\ t C_ ran ( A CNF B ) ) ) -> ( A ^o B ) =/= (/) ) |
| 57 | oveq1 | |- ( A = (/) -> ( A ^o B ) = ( (/) ^o B ) ) |
|
| 58 | 57 | neeq1d | |- ( A = (/) -> ( ( A ^o B ) =/= (/) <-> ( (/) ^o B ) =/= (/) ) ) |
| 59 | 56 58 | syl5ibcom | |- ( ( ph /\ ( t e. ( A ^o B ) /\ t C_ ran ( A CNF B ) ) ) -> ( A = (/) -> ( (/) ^o B ) =/= (/) ) ) |
| 60 | 59 | necon2d | |- ( ( ph /\ ( t e. ( A ^o B ) /\ t C_ ran ( A CNF B ) ) ) -> ( ( (/) ^o B ) = (/) -> A =/= (/) ) ) |
| 61 | on0eln0 | |- ( B e. On -> ( (/) e. B <-> B =/= (/) ) ) |
|
| 62 | oe0m1 | |- ( B e. On -> ( (/) e. B <-> ( (/) ^o B ) = (/) ) ) |
|
| 63 | 61 62 | bitr3d | |- ( B e. On -> ( B =/= (/) <-> ( (/) ^o B ) = (/) ) ) |
| 64 | 35 63 | syl | |- ( ( ph /\ ( t e. ( A ^o B ) /\ t C_ ran ( A CNF B ) ) ) -> ( B =/= (/) <-> ( (/) ^o B ) = (/) ) ) |
| 65 | on0eln0 | |- ( A e. On -> ( (/) e. A <-> A =/= (/) ) ) |
|
| 66 | 33 65 | syl | |- ( ( ph /\ ( t e. ( A ^o B ) /\ t C_ ran ( A CNF B ) ) ) -> ( (/) e. A <-> A =/= (/) ) ) |
| 67 | 60 64 66 | 3imtr4d | |- ( ( ph /\ ( t e. ( A ^o B ) /\ t C_ ran ( A CNF B ) ) ) -> ( B =/= (/) -> (/) e. A ) ) |
| 68 | ne0i | |- ( y e. B -> B =/= (/) ) |
|
| 69 | 67 68 | impel | |- ( ( ( ph /\ ( t e. ( A ^o B ) /\ t C_ ran ( A CNF B ) ) ) /\ y e. B ) -> (/) e. A ) |
| 70 | fconstmpt | |- ( B X. { (/) } ) = ( y e. B |-> (/) ) |
|
| 71 | 69 70 | fmptd | |- ( ( ph /\ ( t e. ( A ^o B ) /\ t C_ ran ( A CNF B ) ) ) -> ( B X. { (/) } ) : B --> A ) |
| 72 | 0ex | |- (/) e. _V |
|
| 73 | 72 | a1i | |- ( ph -> (/) e. _V ) |
| 74 | 3 73 | fczfsuppd | |- ( ph -> ( B X. { (/) } ) finSupp (/) ) |
| 75 | 74 | adantr | |- ( ( ph /\ ( t e. ( A ^o B ) /\ t C_ ran ( A CNF B ) ) ) -> ( B X. { (/) } ) finSupp (/) ) |
| 76 | 1 2 3 | cantnfs | |- ( ph -> ( ( B X. { (/) } ) e. S <-> ( ( B X. { (/) } ) : B --> A /\ ( B X. { (/) } ) finSupp (/) ) ) ) |
| 77 | 76 | adantr | |- ( ( ph /\ ( t e. ( A ^o B ) /\ t C_ ran ( A CNF B ) ) ) -> ( ( B X. { (/) } ) e. S <-> ( ( B X. { (/) } ) : B --> A /\ ( B X. { (/) } ) finSupp (/) ) ) ) |
| 78 | 71 75 77 | mpbir2and | |- ( ( ph /\ ( t e. ( A ^o B ) /\ t C_ ran ( A CNF B ) ) ) -> ( B X. { (/) } ) e. S ) |
| 79 | eqid | |- seqom ( ( k e. _V , z e. _V |-> ( ( ( A ^o ( OrdIso ( _E , (/) ) ` k ) ) .o ( ( B X. { (/) } ) ` ( OrdIso ( _E , (/) ) ` k ) ) ) +o z ) ) , (/) ) = seqom ( ( k e. _V , z e. _V |-> ( ( ( A ^o ( OrdIso ( _E , (/) ) ` k ) ) .o ( ( B X. { (/) } ) ` ( OrdIso ( _E , (/) ) ` k ) ) ) +o z ) ) , (/) ) |
|
| 80 | 1 33 35 54 78 79 | cantnfval | |- ( ( ph /\ ( t e. ( A ^o B ) /\ t C_ ran ( A CNF B ) ) ) -> ( ( A CNF B ) ` ( B X. { (/) } ) ) = ( seqom ( ( k e. _V , z e. _V |-> ( ( ( A ^o ( OrdIso ( _E , (/) ) ` k ) ) .o ( ( B X. { (/) } ) ` ( OrdIso ( _E , (/) ) ` k ) ) ) +o z ) ) , (/) ) ` dom OrdIso ( _E , (/) ) ) ) |
| 81 | we0 | |- _E We (/) |
|
| 82 | eqid | |- OrdIso ( _E , (/) ) = OrdIso ( _E , (/) ) |
|
| 83 | 82 | oien | |- ( ( (/) e. _V /\ _E We (/) ) -> dom OrdIso ( _E , (/) ) ~~ (/) ) |
| 84 | 72 81 83 | mp2an | |- dom OrdIso ( _E , (/) ) ~~ (/) |
| 85 | en0 | |- ( dom OrdIso ( _E , (/) ) ~~ (/) <-> dom OrdIso ( _E , (/) ) = (/) ) |
|
| 86 | 84 85 | mpbi | |- dom OrdIso ( _E , (/) ) = (/) |
| 87 | 86 | fveq2i | |- ( seqom ( ( k e. _V , z e. _V |-> ( ( ( A ^o ( OrdIso ( _E , (/) ) ` k ) ) .o ( ( B X. { (/) } ) ` ( OrdIso ( _E , (/) ) ` k ) ) ) +o z ) ) , (/) ) ` dom OrdIso ( _E , (/) ) ) = ( seqom ( ( k e. _V , z e. _V |-> ( ( ( A ^o ( OrdIso ( _E , (/) ) ` k ) ) .o ( ( B X. { (/) } ) ` ( OrdIso ( _E , (/) ) ` k ) ) ) +o z ) ) , (/) ) ` (/) ) |
| 88 | 79 | seqom0g | |- ( (/) e. _V -> ( seqom ( ( k e. _V , z e. _V |-> ( ( ( A ^o ( OrdIso ( _E , (/) ) ` k ) ) .o ( ( B X. { (/) } ) ` ( OrdIso ( _E , (/) ) ` k ) ) ) +o z ) ) , (/) ) ` (/) ) = (/) ) |
| 89 | 72 88 | ax-mp | |- ( seqom ( ( k e. _V , z e. _V |-> ( ( ( A ^o ( OrdIso ( _E , (/) ) ` k ) ) .o ( ( B X. { (/) } ) ` ( OrdIso ( _E , (/) ) ` k ) ) ) +o z ) ) , (/) ) ` (/) ) = (/) |
| 90 | 87 89 | eqtri | |- ( seqom ( ( k e. _V , z e. _V |-> ( ( ( A ^o ( OrdIso ( _E , (/) ) ` k ) ) .o ( ( B X. { (/) } ) ` ( OrdIso ( _E , (/) ) ` k ) ) ) +o z ) ) , (/) ) ` dom OrdIso ( _E , (/) ) ) = (/) |
| 91 | 80 90 | eqtrdi | |- ( ( ph /\ ( t e. ( A ^o B ) /\ t C_ ran ( A CNF B ) ) ) -> ( ( A CNF B ) ` ( B X. { (/) } ) ) = (/) ) |
| 92 | 14 | adantr | |- ( ( ph /\ ( t e. ( A ^o B ) /\ t C_ ran ( A CNF B ) ) ) -> ( A CNF B ) : S --> ( A ^o B ) ) |
| 93 | 92 | ffnd | |- ( ( ph /\ ( t e. ( A ^o B ) /\ t C_ ran ( A CNF B ) ) ) -> ( A CNF B ) Fn S ) |
| 94 | fnfvelrn | |- ( ( ( A CNF B ) Fn S /\ ( B X. { (/) } ) e. S ) -> ( ( A CNF B ) ` ( B X. { (/) } ) ) e. ran ( A CNF B ) ) |
|
| 95 | 93 78 94 | syl2anc | |- ( ( ph /\ ( t e. ( A ^o B ) /\ t C_ ran ( A CNF B ) ) ) -> ( ( A CNF B ) ` ( B X. { (/) } ) ) e. ran ( A CNF B ) ) |
| 96 | 91 95 | eqeltrrd | |- ( ( ph /\ ( t e. ( A ^o B ) /\ t C_ ran ( A CNF B ) ) ) -> (/) e. ran ( A CNF B ) ) |
| 97 | 32 50 96 | pm2.61ne | |- ( ( ph /\ ( t e. ( A ^o B ) /\ t C_ ran ( A CNF B ) ) ) -> t e. ran ( A CNF B ) ) |
| 98 | 97 | expr | |- ( ( ph /\ t e. ( A ^o B ) ) -> ( t C_ ran ( A CNF B ) -> t e. ran ( A CNF B ) ) ) |
| 99 | 31 98 | sylbid | |- ( ( ph /\ t e. ( A ^o B ) ) -> ( A. y e. t ( y e. ( A ^o B ) -> y e. ran ( A CNF B ) ) -> t e. ran ( A CNF B ) ) ) |
| 100 | 99 | ex | |- ( ph -> ( t e. ( A ^o B ) -> ( A. y e. t ( y e. ( A ^o B ) -> y e. ran ( A CNF B ) ) -> t e. ran ( A CNF B ) ) ) ) |
| 101 | 100 | com23 | |- ( ph -> ( A. y e. t ( y e. ( A ^o B ) -> y e. ran ( A CNF B ) ) -> ( t e. ( A ^o B ) -> t e. ran ( A CNF B ) ) ) ) |
| 102 | 101 | a2i | |- ( ( ph -> A. y e. t ( y e. ( A ^o B ) -> y e. ran ( A CNF B ) ) ) -> ( ph -> ( t e. ( A ^o B ) -> t e. ran ( A CNF B ) ) ) ) |
| 103 | 102 | a1i | |- ( t e. On -> ( ( ph -> A. y e. t ( y e. ( A ^o B ) -> y e. ran ( A CNF B ) ) ) -> ( ph -> ( t e. ( A ^o B ) -> t e. ran ( A CNF B ) ) ) ) ) |
| 104 | 23 103 | biimtrid | |- ( t e. On -> ( A. y e. t ( ph -> ( y e. ( A ^o B ) -> y e. ran ( A CNF B ) ) ) -> ( ph -> ( t e. ( A ^o B ) -> t e. ran ( A CNF B ) ) ) ) ) |
| 105 | 22 104 | tfis2 | |- ( t e. On -> ( ph -> ( t e. ( A ^o B ) -> t e. ran ( A CNF B ) ) ) ) |
| 106 | 105 | com3l | |- ( ph -> ( t e. ( A ^o B ) -> ( t e. On -> t e. ran ( A CNF B ) ) ) ) |
| 107 | 18 106 | mpdd | |- ( ph -> ( t e. ( A ^o B ) -> t e. ran ( A CNF B ) ) ) |
| 108 | 107 | ssrdv | |- ( ph -> ( A ^o B ) C_ ran ( A CNF B ) ) |
| 109 | 15 108 | eqssd | |- ( ph -> ran ( A CNF B ) = ( A ^o B ) ) |
| 110 | dffo2 | |- ( ( A CNF B ) : S -onto-> ( A ^o B ) <-> ( ( A CNF B ) : S --> ( A ^o B ) /\ ran ( A CNF B ) = ( A ^o B ) ) ) |
|
| 111 | 14 109 110 | sylanbrc | |- ( ph -> ( A CNF B ) : S -onto-> ( A ^o B ) ) |
| 112 | 2 | adantr | |- ( ( ph /\ ( ( f e. S /\ g e. S ) /\ f T g ) ) -> A e. On ) |
| 113 | 3 | adantr | |- ( ( ph /\ ( ( f e. S /\ g e. S ) /\ f T g ) ) -> B e. On ) |
| 114 | fveq2 | |- ( z = t -> ( x ` z ) = ( x ` t ) ) |
|
| 115 | fveq2 | |- ( z = t -> ( y ` z ) = ( y ` t ) ) |
|
| 116 | 114 115 | eleq12d | |- ( z = t -> ( ( x ` z ) e. ( y ` z ) <-> ( x ` t ) e. ( y ` t ) ) ) |
| 117 | eleq1w | |- ( z = t -> ( z e. w <-> t e. w ) ) |
|
| 118 | 117 | imbi1d | |- ( z = t -> ( ( z e. w -> ( x ` w ) = ( y ` w ) ) <-> ( t e. w -> ( x ` w ) = ( y ` w ) ) ) ) |
| 119 | 118 | ralbidv | |- ( z = t -> ( A. w e. B ( z e. w -> ( x ` w ) = ( y ` w ) ) <-> A. w e. B ( t e. w -> ( x ` w ) = ( y ` w ) ) ) ) |
| 120 | 116 119 | anbi12d | |- ( z = t -> ( ( ( x ` z ) e. ( y ` z ) /\ A. w e. B ( z e. w -> ( x ` w ) = ( y ` w ) ) ) <-> ( ( x ` t ) e. ( y ` t ) /\ A. w e. B ( t e. w -> ( x ` w ) = ( y ` w ) ) ) ) ) |
| 121 | 120 | cbvrexvw | |- ( E. z e. B ( ( x ` z ) e. ( y ` z ) /\ A. w e. B ( z e. w -> ( x ` w ) = ( y ` w ) ) ) <-> E. t e. B ( ( x ` t ) e. ( y ` t ) /\ A. w e. B ( t e. w -> ( x ` w ) = ( y ` w ) ) ) ) |
| 122 | fveq1 | |- ( x = u -> ( x ` t ) = ( u ` t ) ) |
|
| 123 | fveq1 | |- ( y = v -> ( y ` t ) = ( v ` t ) ) |
|
| 124 | eleq12 | |- ( ( ( x ` t ) = ( u ` t ) /\ ( y ` t ) = ( v ` t ) ) -> ( ( x ` t ) e. ( y ` t ) <-> ( u ` t ) e. ( v ` t ) ) ) |
|
| 125 | 122 123 124 | syl2an | |- ( ( x = u /\ y = v ) -> ( ( x ` t ) e. ( y ` t ) <-> ( u ` t ) e. ( v ` t ) ) ) |
| 126 | fveq1 | |- ( x = u -> ( x ` w ) = ( u ` w ) ) |
|
| 127 | fveq1 | |- ( y = v -> ( y ` w ) = ( v ` w ) ) |
|
| 128 | 126 127 | eqeqan12d | |- ( ( x = u /\ y = v ) -> ( ( x ` w ) = ( y ` w ) <-> ( u ` w ) = ( v ` w ) ) ) |
| 129 | 128 | imbi2d | |- ( ( x = u /\ y = v ) -> ( ( t e. w -> ( x ` w ) = ( y ` w ) ) <-> ( t e. w -> ( u ` w ) = ( v ` w ) ) ) ) |
| 130 | 129 | ralbidv | |- ( ( x = u /\ y = v ) -> ( A. w e. B ( t e. w -> ( x ` w ) = ( y ` w ) ) <-> A. w e. B ( t e. w -> ( u ` w ) = ( v ` w ) ) ) ) |
| 131 | 125 130 | anbi12d | |- ( ( x = u /\ y = v ) -> ( ( ( x ` t ) e. ( y ` t ) /\ A. w e. B ( t e. w -> ( x ` w ) = ( y ` w ) ) ) <-> ( ( u ` t ) e. ( v ` t ) /\ A. w e. B ( t e. w -> ( u ` w ) = ( v ` w ) ) ) ) ) |
| 132 | 131 | rexbidv | |- ( ( x = u /\ y = v ) -> ( E. t e. B ( ( x ` t ) e. ( y ` t ) /\ A. w e. B ( t e. w -> ( x ` w ) = ( y ` w ) ) ) <-> E. t e. B ( ( u ` t ) e. ( v ` t ) /\ A. w e. B ( t e. w -> ( u ` w ) = ( v ` w ) ) ) ) ) |
| 133 | 121 132 | bitrid | |- ( ( x = u /\ y = v ) -> ( E. z e. B ( ( x ` z ) e. ( y ` z ) /\ A. w e. B ( z e. w -> ( x ` w ) = ( y ` w ) ) ) <-> E. t e. B ( ( u ` t ) e. ( v ` t ) /\ A. w e. B ( t e. w -> ( u ` w ) = ( v ` w ) ) ) ) ) |
| 134 | 133 | cbvopabv | |- { <. x , y >. | E. z e. B ( ( x ` z ) e. ( y ` z ) /\ A. w e. B ( z e. w -> ( x ` w ) = ( y ` w ) ) ) } = { <. u , v >. | E. t e. B ( ( u ` t ) e. ( v ` t ) /\ A. w e. B ( t e. w -> ( u ` w ) = ( v ` w ) ) ) } |
| 135 | 4 134 | eqtri | |- T = { <. u , v >. | E. t e. B ( ( u ` t ) e. ( v ` t ) /\ A. w e. B ( t e. w -> ( u ` w ) = ( v ` w ) ) ) } |
| 136 | simprll | |- ( ( ph /\ ( ( f e. S /\ g e. S ) /\ f T g ) ) -> f e. S ) |
|
| 137 | simprlr | |- ( ( ph /\ ( ( f e. S /\ g e. S ) /\ f T g ) ) -> g e. S ) |
|
| 138 | simprr | |- ( ( ph /\ ( ( f e. S /\ g e. S ) /\ f T g ) ) -> f T g ) |
|
| 139 | eqid | |- U. { c e. B | ( f ` c ) e. ( g ` c ) } = U. { c e. B | ( f ` c ) e. ( g ` c ) } |
|
| 140 | eqid | |- OrdIso ( _E , ( g supp (/) ) ) = OrdIso ( _E , ( g supp (/) ) ) |
|
| 141 | eqid | |- seqom ( ( k e. _V , t e. _V |-> ( ( ( A ^o ( OrdIso ( _E , ( g supp (/) ) ) ` k ) ) .o ( g ` ( OrdIso ( _E , ( g supp (/) ) ) ` k ) ) ) +o t ) ) , (/) ) = seqom ( ( k e. _V , t e. _V |-> ( ( ( A ^o ( OrdIso ( _E , ( g supp (/) ) ) ` k ) ) .o ( g ` ( OrdIso ( _E , ( g supp (/) ) ) ` k ) ) ) +o t ) ) , (/) ) |
|
| 142 | 1 112 113 135 136 137 138 139 140 141 | cantnflem1 | |- ( ( ph /\ ( ( f e. S /\ g e. S ) /\ f T g ) ) -> ( ( A CNF B ) ` f ) e. ( ( A CNF B ) ` g ) ) |
| 143 | fvex | |- ( ( A CNF B ) ` g ) e. _V |
|
| 144 | 143 | epeli | |- ( ( ( A CNF B ) ` f ) _E ( ( A CNF B ) ` g ) <-> ( ( A CNF B ) ` f ) e. ( ( A CNF B ) ` g ) ) |
| 145 | 142 144 | sylibr | |- ( ( ph /\ ( ( f e. S /\ g e. S ) /\ f T g ) ) -> ( ( A CNF B ) ` f ) _E ( ( A CNF B ) ` g ) ) |
| 146 | 145 | expr | |- ( ( ph /\ ( f e. S /\ g e. S ) ) -> ( f T g -> ( ( A CNF B ) ` f ) _E ( ( A CNF B ) ` g ) ) ) |
| 147 | 146 | ralrimivva | |- ( ph -> A. f e. S A. g e. S ( f T g -> ( ( A CNF B ) ` f ) _E ( ( A CNF B ) ` g ) ) ) |
| 148 | soisoi | |- ( ( ( T Or S /\ _E Po ( A ^o B ) ) /\ ( ( A CNF B ) : S -onto-> ( A ^o B ) /\ A. f e. S A. g e. S ( f T g -> ( ( A CNF B ) ` f ) _E ( ( A CNF B ) ` g ) ) ) ) -> ( A CNF B ) Isom T , _E ( S , ( A ^o B ) ) ) |
|
| 149 | 5 13 111 147 148 | syl22anc | |- ( ph -> ( A CNF B ) Isom T , _E ( S , ( A ^o B ) ) ) |