This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The support of a constant function with value zero is empty. (Contributed by AV, 30-Jun-2019)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | fczsupp0 | ⊢ ( ( 𝐵 × { 𝑍 } ) supp 𝑍 ) = ∅ |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqidd | ⊢ ( ( ( 𝐵 × { 𝑍 } ) ∈ V ∧ 𝑍 ∈ V ) → ( 𝐵 × { 𝑍 } ) = ( 𝐵 × { 𝑍 } ) ) | |
| 2 | fnconstg | ⊢ ( 𝑍 ∈ V → ( 𝐵 × { 𝑍 } ) Fn 𝐵 ) | |
| 3 | 2 | adantl | ⊢ ( ( ( 𝐵 × { 𝑍 } ) ∈ V ∧ 𝑍 ∈ V ) → ( 𝐵 × { 𝑍 } ) Fn 𝐵 ) |
| 4 | snnzg | ⊢ ( 𝑍 ∈ V → { 𝑍 } ≠ ∅ ) | |
| 5 | simpl | ⊢ ( ( ( 𝐵 × { 𝑍 } ) ∈ V ∧ 𝑍 ∈ V ) → ( 𝐵 × { 𝑍 } ) ∈ V ) | |
| 6 | xpexcnv | ⊢ ( ( { 𝑍 } ≠ ∅ ∧ ( 𝐵 × { 𝑍 } ) ∈ V ) → 𝐵 ∈ V ) | |
| 7 | 4 5 6 | syl2an2 | ⊢ ( ( ( 𝐵 × { 𝑍 } ) ∈ V ∧ 𝑍 ∈ V ) → 𝐵 ∈ V ) |
| 8 | simpr | ⊢ ( ( ( 𝐵 × { 𝑍 } ) ∈ V ∧ 𝑍 ∈ V ) → 𝑍 ∈ V ) | |
| 9 | fnsuppeq0 | ⊢ ( ( ( 𝐵 × { 𝑍 } ) Fn 𝐵 ∧ 𝐵 ∈ V ∧ 𝑍 ∈ V ) → ( ( ( 𝐵 × { 𝑍 } ) supp 𝑍 ) = ∅ ↔ ( 𝐵 × { 𝑍 } ) = ( 𝐵 × { 𝑍 } ) ) ) | |
| 10 | 3 7 8 9 | syl3anc | ⊢ ( ( ( 𝐵 × { 𝑍 } ) ∈ V ∧ 𝑍 ∈ V ) → ( ( ( 𝐵 × { 𝑍 } ) supp 𝑍 ) = ∅ ↔ ( 𝐵 × { 𝑍 } ) = ( 𝐵 × { 𝑍 } ) ) ) |
| 11 | 1 10 | mpbird | ⊢ ( ( ( 𝐵 × { 𝑍 } ) ∈ V ∧ 𝑍 ∈ V ) → ( ( 𝐵 × { 𝑍 } ) supp 𝑍 ) = ∅ ) |
| 12 | supp0prc | ⊢ ( ¬ ( ( 𝐵 × { 𝑍 } ) ∈ V ∧ 𝑍 ∈ V ) → ( ( 𝐵 × { 𝑍 } ) supp 𝑍 ) = ∅ ) | |
| 13 | 11 12 | pm2.61i | ⊢ ( ( 𝐵 × { 𝑍 } ) supp 𝑍 ) = ∅ |