This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A constant function with value zero is finitely supported. (Contributed by AV, 30-Jun-2019)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | fczfsuppd.b | ⊢ ( 𝜑 → 𝐵 ∈ 𝑉 ) | |
| fczfsuppd.z | ⊢ ( 𝜑 → 𝑍 ∈ 𝑊 ) | ||
| Assertion | fczfsuppd | ⊢ ( 𝜑 → ( 𝐵 × { 𝑍 } ) finSupp 𝑍 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fczfsuppd.b | ⊢ ( 𝜑 → 𝐵 ∈ 𝑉 ) | |
| 2 | fczfsuppd.z | ⊢ ( 𝜑 → 𝑍 ∈ 𝑊 ) | |
| 3 | fnconstg | ⊢ ( 𝑍 ∈ 𝑊 → ( 𝐵 × { 𝑍 } ) Fn 𝐵 ) | |
| 4 | fnfun | ⊢ ( ( 𝐵 × { 𝑍 } ) Fn 𝐵 → Fun ( 𝐵 × { 𝑍 } ) ) | |
| 5 | 2 3 4 | 3syl | ⊢ ( 𝜑 → Fun ( 𝐵 × { 𝑍 } ) ) |
| 6 | fczsupp0 | ⊢ ( ( 𝐵 × { 𝑍 } ) supp 𝑍 ) = ∅ | |
| 7 | 0fi | ⊢ ∅ ∈ Fin | |
| 8 | 6 7 | eqeltri | ⊢ ( ( 𝐵 × { 𝑍 } ) supp 𝑍 ) ∈ Fin |
| 9 | 8 | a1i | ⊢ ( 𝜑 → ( ( 𝐵 × { 𝑍 } ) supp 𝑍 ) ∈ Fin ) |
| 10 | snex | ⊢ { 𝑍 } ∈ V | |
| 11 | xpexg | ⊢ ( ( 𝐵 ∈ 𝑉 ∧ { 𝑍 } ∈ V ) → ( 𝐵 × { 𝑍 } ) ∈ V ) | |
| 12 | 1 10 11 | sylancl | ⊢ ( 𝜑 → ( 𝐵 × { 𝑍 } ) ∈ V ) |
| 13 | isfsupp | ⊢ ( ( ( 𝐵 × { 𝑍 } ) ∈ V ∧ 𝑍 ∈ 𝑊 ) → ( ( 𝐵 × { 𝑍 } ) finSupp 𝑍 ↔ ( Fun ( 𝐵 × { 𝑍 } ) ∧ ( ( 𝐵 × { 𝑍 } ) supp 𝑍 ) ∈ Fin ) ) ) | |
| 14 | 12 2 13 | syl2anc | ⊢ ( 𝜑 → ( ( 𝐵 × { 𝑍 } ) finSupp 𝑍 ↔ ( Fun ( 𝐵 × { 𝑍 } ) ∧ ( ( 𝐵 × { 𝑍 } ) supp 𝑍 ) ∈ Fin ) ) ) |
| 15 | 5 9 14 | mpbir2and | ⊢ ( 𝜑 → ( 𝐵 × { 𝑍 } ) finSupp 𝑍 ) |