This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Transfinite Induction Schema, using implicit substitution. (Contributed by NM, 18-Aug-1994)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | tfis2.1 | ⊢ ( 𝑥 = 𝑦 → ( 𝜑 ↔ 𝜓 ) ) | |
| tfis2.2 | ⊢ ( 𝑥 ∈ On → ( ∀ 𝑦 ∈ 𝑥 𝜓 → 𝜑 ) ) | ||
| Assertion | tfis2 | ⊢ ( 𝑥 ∈ On → 𝜑 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | tfis2.1 | ⊢ ( 𝑥 = 𝑦 → ( 𝜑 ↔ 𝜓 ) ) | |
| 2 | tfis2.2 | ⊢ ( 𝑥 ∈ On → ( ∀ 𝑦 ∈ 𝑥 𝜓 → 𝜑 ) ) | |
| 3 | nfv | ⊢ Ⅎ 𝑥 𝜓 | |
| 4 | 3 1 2 | tfis2f | ⊢ ( 𝑥 ∈ On → 𝜑 ) |