This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for uniioombl . (Contributed by Mario Carneiro, 26-Mar-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | uniioombl.1 | |- ( ph -> F : NN --> ( <_ i^i ( RR X. RR ) ) ) |
|
| uniioombl.2 | |- ( ph -> Disj_ x e. NN ( (,) ` ( F ` x ) ) ) |
||
| uniioombl.3 | |- S = seq 1 ( + , ( ( abs o. - ) o. F ) ) |
||
| uniioombl.a | |- A = U. ran ( (,) o. F ) |
||
| uniioombl.e | |- ( ph -> ( vol* ` E ) e. RR ) |
||
| uniioombl.c | |- ( ph -> C e. RR+ ) |
||
| uniioombl.g | |- ( ph -> G : NN --> ( <_ i^i ( RR X. RR ) ) ) |
||
| uniioombl.s | |- ( ph -> E C_ U. ran ( (,) o. G ) ) |
||
| uniioombl.t | |- T = seq 1 ( + , ( ( abs o. - ) o. G ) ) |
||
| uniioombl.v | |- ( ph -> sup ( ran T , RR* , < ) <_ ( ( vol* ` E ) + C ) ) |
||
| Assertion | uniioombllem6 | |- ( ph -> ( ( vol* ` ( E i^i A ) ) + ( vol* ` ( E \ A ) ) ) <_ ( ( vol* ` E ) + ( 4 x. C ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | uniioombl.1 | |- ( ph -> F : NN --> ( <_ i^i ( RR X. RR ) ) ) |
|
| 2 | uniioombl.2 | |- ( ph -> Disj_ x e. NN ( (,) ` ( F ` x ) ) ) |
|
| 3 | uniioombl.3 | |- S = seq 1 ( + , ( ( abs o. - ) o. F ) ) |
|
| 4 | uniioombl.a | |- A = U. ran ( (,) o. F ) |
|
| 5 | uniioombl.e | |- ( ph -> ( vol* ` E ) e. RR ) |
|
| 6 | uniioombl.c | |- ( ph -> C e. RR+ ) |
|
| 7 | uniioombl.g | |- ( ph -> G : NN --> ( <_ i^i ( RR X. RR ) ) ) |
|
| 8 | uniioombl.s | |- ( ph -> E C_ U. ran ( (,) o. G ) ) |
|
| 9 | uniioombl.t | |- T = seq 1 ( + , ( ( abs o. - ) o. G ) ) |
|
| 10 | uniioombl.v | |- ( ph -> sup ( ran T , RR* , < ) <_ ( ( vol* ` E ) + C ) ) |
|
| 11 | nnuz | |- NN = ( ZZ>= ` 1 ) |
|
| 12 | 1zzd | |- ( ph -> 1 e. ZZ ) |
|
| 13 | eqidd | |- ( ( ph /\ m e. NN ) -> ( T ` m ) = ( T ` m ) ) |
|
| 14 | eqidd | |- ( ( ph /\ a e. NN ) -> ( ( ( abs o. - ) o. G ) ` a ) = ( ( ( abs o. - ) o. G ) ` a ) ) |
|
| 15 | eqid | |- ( ( abs o. - ) o. G ) = ( ( abs o. - ) o. G ) |
|
| 16 | 15 | ovolfsf | |- ( G : NN --> ( <_ i^i ( RR X. RR ) ) -> ( ( abs o. - ) o. G ) : NN --> ( 0 [,) +oo ) ) |
| 17 | 7 16 | syl | |- ( ph -> ( ( abs o. - ) o. G ) : NN --> ( 0 [,) +oo ) ) |
| 18 | 17 | ffvelcdmda | |- ( ( ph /\ a e. NN ) -> ( ( ( abs o. - ) o. G ) ` a ) e. ( 0 [,) +oo ) ) |
| 19 | elrege0 | |- ( ( ( ( abs o. - ) o. G ) ` a ) e. ( 0 [,) +oo ) <-> ( ( ( ( abs o. - ) o. G ) ` a ) e. RR /\ 0 <_ ( ( ( abs o. - ) o. G ) ` a ) ) ) |
|
| 20 | 18 19 | sylib | |- ( ( ph /\ a e. NN ) -> ( ( ( ( abs o. - ) o. G ) ` a ) e. RR /\ 0 <_ ( ( ( abs o. - ) o. G ) ` a ) ) ) |
| 21 | 20 | simpld | |- ( ( ph /\ a e. NN ) -> ( ( ( abs o. - ) o. G ) ` a ) e. RR ) |
| 22 | 20 | simprd | |- ( ( ph /\ a e. NN ) -> 0 <_ ( ( ( abs o. - ) o. G ) ` a ) ) |
| 23 | 1 2 3 4 5 6 7 8 9 10 | uniioombllem1 | |- ( ph -> sup ( ran T , RR* , < ) e. RR ) |
| 24 | 15 9 | ovolsf | |- ( G : NN --> ( <_ i^i ( RR X. RR ) ) -> T : NN --> ( 0 [,) +oo ) ) |
| 25 | 7 24 | syl | |- ( ph -> T : NN --> ( 0 [,) +oo ) ) |
| 26 | 25 | frnd | |- ( ph -> ran T C_ ( 0 [,) +oo ) ) |
| 27 | icossxr | |- ( 0 [,) +oo ) C_ RR* |
|
| 28 | 26 27 | sstrdi | |- ( ph -> ran T C_ RR* ) |
| 29 | supxrub | |- ( ( ran T C_ RR* /\ x e. ran T ) -> x <_ sup ( ran T , RR* , < ) ) |
|
| 30 | 28 29 | sylan | |- ( ( ph /\ x e. ran T ) -> x <_ sup ( ran T , RR* , < ) ) |
| 31 | 30 | ralrimiva | |- ( ph -> A. x e. ran T x <_ sup ( ran T , RR* , < ) ) |
| 32 | 25 | ffnd | |- ( ph -> T Fn NN ) |
| 33 | breq1 | |- ( x = ( T ` m ) -> ( x <_ sup ( ran T , RR* , < ) <-> ( T ` m ) <_ sup ( ran T , RR* , < ) ) ) |
|
| 34 | 33 | ralrn | |- ( T Fn NN -> ( A. x e. ran T x <_ sup ( ran T , RR* , < ) <-> A. m e. NN ( T ` m ) <_ sup ( ran T , RR* , < ) ) ) |
| 35 | 32 34 | syl | |- ( ph -> ( A. x e. ran T x <_ sup ( ran T , RR* , < ) <-> A. m e. NN ( T ` m ) <_ sup ( ran T , RR* , < ) ) ) |
| 36 | 31 35 | mpbid | |- ( ph -> A. m e. NN ( T ` m ) <_ sup ( ran T , RR* , < ) ) |
| 37 | brralrspcev | |- ( ( sup ( ran T , RR* , < ) e. RR /\ A. m e. NN ( T ` m ) <_ sup ( ran T , RR* , < ) ) -> E. x e. RR A. m e. NN ( T ` m ) <_ x ) |
|
| 38 | 23 36 37 | syl2anc | |- ( ph -> E. x e. RR A. m e. NN ( T ` m ) <_ x ) |
| 39 | 11 9 12 14 21 22 38 | isumsup2 | |- ( ph -> T ~~> sup ( ran T , RR , < ) ) |
| 40 | rge0ssre | |- ( 0 [,) +oo ) C_ RR |
|
| 41 | 26 40 | sstrdi | |- ( ph -> ran T C_ RR ) |
| 42 | 1nn | |- 1 e. NN |
|
| 43 | 25 | fdmd | |- ( ph -> dom T = NN ) |
| 44 | 42 43 | eleqtrrid | |- ( ph -> 1 e. dom T ) |
| 45 | 44 | ne0d | |- ( ph -> dom T =/= (/) ) |
| 46 | dm0rn0 | |- ( dom T = (/) <-> ran T = (/) ) |
|
| 47 | 46 | necon3bii | |- ( dom T =/= (/) <-> ran T =/= (/) ) |
| 48 | 45 47 | sylib | |- ( ph -> ran T =/= (/) ) |
| 49 | brralrspcev | |- ( ( sup ( ran T , RR* , < ) e. RR /\ A. x e. ran T x <_ sup ( ran T , RR* , < ) ) -> E. y e. RR A. x e. ran T x <_ y ) |
|
| 50 | 23 31 49 | syl2anc | |- ( ph -> E. y e. RR A. x e. ran T x <_ y ) |
| 51 | supxrre | |- ( ( ran T C_ RR /\ ran T =/= (/) /\ E. y e. RR A. x e. ran T x <_ y ) -> sup ( ran T , RR* , < ) = sup ( ran T , RR , < ) ) |
|
| 52 | 41 48 50 51 | syl3anc | |- ( ph -> sup ( ran T , RR* , < ) = sup ( ran T , RR , < ) ) |
| 53 | 39 52 | breqtrrd | |- ( ph -> T ~~> sup ( ran T , RR* , < ) ) |
| 54 | 11 12 6 13 53 | climi2 | |- ( ph -> E. j e. NN A. m e. ( ZZ>= ` j ) ( abs ` ( ( T ` m ) - sup ( ran T , RR* , < ) ) ) < C ) |
| 55 | 11 | r19.2uz | |- ( E. j e. NN A. m e. ( ZZ>= ` j ) ( abs ` ( ( T ` m ) - sup ( ran T , RR* , < ) ) ) < C -> E. m e. NN ( abs ` ( ( T ` m ) - sup ( ran T , RR* , < ) ) ) < C ) |
| 56 | 54 55 | syl | |- ( ph -> E. m e. NN ( abs ` ( ( T ` m ) - sup ( ran T , RR* , < ) ) ) < C ) |
| 57 | 1zzd | |- ( ( ( ph /\ ( m e. NN /\ ( abs ` ( ( T ` m ) - sup ( ran T , RR* , < ) ) ) < C ) ) /\ j e. ( 1 ... m ) ) -> 1 e. ZZ ) |
|
| 58 | 6 | ad2antrr | |- ( ( ( ph /\ ( m e. NN /\ ( abs ` ( ( T ` m ) - sup ( ran T , RR* , < ) ) ) < C ) ) /\ j e. ( 1 ... m ) ) -> C e. RR+ ) |
| 59 | simplrl | |- ( ( ( ph /\ ( m e. NN /\ ( abs ` ( ( T ` m ) - sup ( ran T , RR* , < ) ) ) < C ) ) /\ j e. ( 1 ... m ) ) -> m e. NN ) |
|
| 60 | 59 | nnrpd | |- ( ( ( ph /\ ( m e. NN /\ ( abs ` ( ( T ` m ) - sup ( ran T , RR* , < ) ) ) < C ) ) /\ j e. ( 1 ... m ) ) -> m e. RR+ ) |
| 61 | 58 60 | rpdivcld | |- ( ( ( ph /\ ( m e. NN /\ ( abs ` ( ( T ` m ) - sup ( ran T , RR* , < ) ) ) < C ) ) /\ j e. ( 1 ... m ) ) -> ( C / m ) e. RR+ ) |
| 62 | fvex | |- ( (,) ` ( F ` z ) ) e. _V |
|
| 63 | 62 | inex1 | |- ( ( (,) ` ( F ` z ) ) i^i ( (,) ` ( G ` j ) ) ) e. _V |
| 64 | 63 | rgenw | |- A. z e. NN ( ( (,) ` ( F ` z ) ) i^i ( (,) ` ( G ` j ) ) ) e. _V |
| 65 | eqid | |- ( z e. NN |-> ( ( (,) ` ( F ` z ) ) i^i ( (,) ` ( G ` j ) ) ) ) = ( z e. NN |-> ( ( (,) ` ( F ` z ) ) i^i ( (,) ` ( G ` j ) ) ) ) |
|
| 66 | 65 | fnmpt | |- ( A. z e. NN ( ( (,) ` ( F ` z ) ) i^i ( (,) ` ( G ` j ) ) ) e. _V -> ( z e. NN |-> ( ( (,) ` ( F ` z ) ) i^i ( (,) ` ( G ` j ) ) ) ) Fn NN ) |
| 67 | 64 66 | mp1i | |- ( ( ( ( ph /\ ( m e. NN /\ ( abs ` ( ( T ` m ) - sup ( ran T , RR* , < ) ) ) < C ) ) /\ j e. ( 1 ... m ) ) /\ n e. NN ) -> ( z e. NN |-> ( ( (,) ` ( F ` z ) ) i^i ( (,) ` ( G ` j ) ) ) ) Fn NN ) |
| 68 | elfznn | |- ( i e. ( 1 ... n ) -> i e. NN ) |
|
| 69 | fvco2 | |- ( ( ( z e. NN |-> ( ( (,) ` ( F ` z ) ) i^i ( (,) ` ( G ` j ) ) ) ) Fn NN /\ i e. NN ) -> ( ( vol* o. ( z e. NN |-> ( ( (,) ` ( F ` z ) ) i^i ( (,) ` ( G ` j ) ) ) ) ) ` i ) = ( vol* ` ( ( z e. NN |-> ( ( (,) ` ( F ` z ) ) i^i ( (,) ` ( G ` j ) ) ) ) ` i ) ) ) |
|
| 70 | 67 68 69 | syl2an | |- ( ( ( ( ( ph /\ ( m e. NN /\ ( abs ` ( ( T ` m ) - sup ( ran T , RR* , < ) ) ) < C ) ) /\ j e. ( 1 ... m ) ) /\ n e. NN ) /\ i e. ( 1 ... n ) ) -> ( ( vol* o. ( z e. NN |-> ( ( (,) ` ( F ` z ) ) i^i ( (,) ` ( G ` j ) ) ) ) ) ` i ) = ( vol* ` ( ( z e. NN |-> ( ( (,) ` ( F ` z ) ) i^i ( (,) ` ( G ` j ) ) ) ) ` i ) ) ) |
| 71 | 68 | adantl | |- ( ( ( ( ( ph /\ ( m e. NN /\ ( abs ` ( ( T ` m ) - sup ( ran T , RR* , < ) ) ) < C ) ) /\ j e. ( 1 ... m ) ) /\ n e. NN ) /\ i e. ( 1 ... n ) ) -> i e. NN ) |
| 72 | 2fveq3 | |- ( z = i -> ( (,) ` ( F ` z ) ) = ( (,) ` ( F ` i ) ) ) |
|
| 73 | 72 | ineq1d | |- ( z = i -> ( ( (,) ` ( F ` z ) ) i^i ( (,) ` ( G ` j ) ) ) = ( ( (,) ` ( F ` i ) ) i^i ( (,) ` ( G ` j ) ) ) ) |
| 74 | fvex | |- ( (,) ` ( F ` i ) ) e. _V |
|
| 75 | 74 | inex1 | |- ( ( (,) ` ( F ` i ) ) i^i ( (,) ` ( G ` j ) ) ) e. _V |
| 76 | 73 65 75 | fvmpt | |- ( i e. NN -> ( ( z e. NN |-> ( ( (,) ` ( F ` z ) ) i^i ( (,) ` ( G ` j ) ) ) ) ` i ) = ( ( (,) ` ( F ` i ) ) i^i ( (,) ` ( G ` j ) ) ) ) |
| 77 | 71 76 | syl | |- ( ( ( ( ( ph /\ ( m e. NN /\ ( abs ` ( ( T ` m ) - sup ( ran T , RR* , < ) ) ) < C ) ) /\ j e. ( 1 ... m ) ) /\ n e. NN ) /\ i e. ( 1 ... n ) ) -> ( ( z e. NN |-> ( ( (,) ` ( F ` z ) ) i^i ( (,) ` ( G ` j ) ) ) ) ` i ) = ( ( (,) ` ( F ` i ) ) i^i ( (,) ` ( G ` j ) ) ) ) |
| 78 | 77 | fveq2d | |- ( ( ( ( ( ph /\ ( m e. NN /\ ( abs ` ( ( T ` m ) - sup ( ran T , RR* , < ) ) ) < C ) ) /\ j e. ( 1 ... m ) ) /\ n e. NN ) /\ i e. ( 1 ... n ) ) -> ( vol* ` ( ( z e. NN |-> ( ( (,) ` ( F ` z ) ) i^i ( (,) ` ( G ` j ) ) ) ) ` i ) ) = ( vol* ` ( ( (,) ` ( F ` i ) ) i^i ( (,) ` ( G ` j ) ) ) ) ) |
| 79 | 70 78 | eqtrd | |- ( ( ( ( ( ph /\ ( m e. NN /\ ( abs ` ( ( T ` m ) - sup ( ran T , RR* , < ) ) ) < C ) ) /\ j e. ( 1 ... m ) ) /\ n e. NN ) /\ i e. ( 1 ... n ) ) -> ( ( vol* o. ( z e. NN |-> ( ( (,) ` ( F ` z ) ) i^i ( (,) ` ( G ` j ) ) ) ) ) ` i ) = ( vol* ` ( ( (,) ` ( F ` i ) ) i^i ( (,) ` ( G ` j ) ) ) ) ) |
| 80 | simpr | |- ( ( ( ( ph /\ ( m e. NN /\ ( abs ` ( ( T ` m ) - sup ( ran T , RR* , < ) ) ) < C ) ) /\ j e. ( 1 ... m ) ) /\ n e. NN ) -> n e. NN ) |
|
| 81 | 80 11 | eleqtrdi | |- ( ( ( ( ph /\ ( m e. NN /\ ( abs ` ( ( T ` m ) - sup ( ran T , RR* , < ) ) ) < C ) ) /\ j e. ( 1 ... m ) ) /\ n e. NN ) -> n e. ( ZZ>= ` 1 ) ) |
| 82 | inss2 | |- ( ( (,) ` ( F ` i ) ) i^i ( (,) ` ( G ` j ) ) ) C_ ( (,) ` ( G ` j ) ) |
|
| 83 | 7 | adantr | |- ( ( ph /\ ( m e. NN /\ ( abs ` ( ( T ` m ) - sup ( ran T , RR* , < ) ) ) < C ) ) -> G : NN --> ( <_ i^i ( RR X. RR ) ) ) |
| 84 | elfznn | |- ( j e. ( 1 ... m ) -> j e. NN ) |
|
| 85 | ffvelcdm | |- ( ( G : NN --> ( <_ i^i ( RR X. RR ) ) /\ j e. NN ) -> ( G ` j ) e. ( <_ i^i ( RR X. RR ) ) ) |
|
| 86 | 83 84 85 | syl2an | |- ( ( ( ph /\ ( m e. NN /\ ( abs ` ( ( T ` m ) - sup ( ran T , RR* , < ) ) ) < C ) ) /\ j e. ( 1 ... m ) ) -> ( G ` j ) e. ( <_ i^i ( RR X. RR ) ) ) |
| 87 | 86 | elin2d | |- ( ( ( ph /\ ( m e. NN /\ ( abs ` ( ( T ` m ) - sup ( ran T , RR* , < ) ) ) < C ) ) /\ j e. ( 1 ... m ) ) -> ( G ` j ) e. ( RR X. RR ) ) |
| 88 | 1st2nd2 | |- ( ( G ` j ) e. ( RR X. RR ) -> ( G ` j ) = <. ( 1st ` ( G ` j ) ) , ( 2nd ` ( G ` j ) ) >. ) |
|
| 89 | 87 88 | syl | |- ( ( ( ph /\ ( m e. NN /\ ( abs ` ( ( T ` m ) - sup ( ran T , RR* , < ) ) ) < C ) ) /\ j e. ( 1 ... m ) ) -> ( G ` j ) = <. ( 1st ` ( G ` j ) ) , ( 2nd ` ( G ` j ) ) >. ) |
| 90 | 89 | fveq2d | |- ( ( ( ph /\ ( m e. NN /\ ( abs ` ( ( T ` m ) - sup ( ran T , RR* , < ) ) ) < C ) ) /\ j e. ( 1 ... m ) ) -> ( (,) ` ( G ` j ) ) = ( (,) ` <. ( 1st ` ( G ` j ) ) , ( 2nd ` ( G ` j ) ) >. ) ) |
| 91 | df-ov | |- ( ( 1st ` ( G ` j ) ) (,) ( 2nd ` ( G ` j ) ) ) = ( (,) ` <. ( 1st ` ( G ` j ) ) , ( 2nd ` ( G ` j ) ) >. ) |
|
| 92 | 90 91 | eqtr4di | |- ( ( ( ph /\ ( m e. NN /\ ( abs ` ( ( T ` m ) - sup ( ran T , RR* , < ) ) ) < C ) ) /\ j e. ( 1 ... m ) ) -> ( (,) ` ( G ` j ) ) = ( ( 1st ` ( G ` j ) ) (,) ( 2nd ` ( G ` j ) ) ) ) |
| 93 | ioossre | |- ( ( 1st ` ( G ` j ) ) (,) ( 2nd ` ( G ` j ) ) ) C_ RR |
|
| 94 | 92 93 | eqsstrdi | |- ( ( ( ph /\ ( m e. NN /\ ( abs ` ( ( T ` m ) - sup ( ran T , RR* , < ) ) ) < C ) ) /\ j e. ( 1 ... m ) ) -> ( (,) ` ( G ` j ) ) C_ RR ) |
| 95 | 94 | ad2antrr | |- ( ( ( ( ( ph /\ ( m e. NN /\ ( abs ` ( ( T ` m ) - sup ( ran T , RR* , < ) ) ) < C ) ) /\ j e. ( 1 ... m ) ) /\ n e. NN ) /\ i e. ( 1 ... n ) ) -> ( (,) ` ( G ` j ) ) C_ RR ) |
| 96 | 92 | fveq2d | |- ( ( ( ph /\ ( m e. NN /\ ( abs ` ( ( T ` m ) - sup ( ran T , RR* , < ) ) ) < C ) ) /\ j e. ( 1 ... m ) ) -> ( vol* ` ( (,) ` ( G ` j ) ) ) = ( vol* ` ( ( 1st ` ( G ` j ) ) (,) ( 2nd ` ( G ` j ) ) ) ) ) |
| 97 | ovolfcl | |- ( ( G : NN --> ( <_ i^i ( RR X. RR ) ) /\ j e. NN ) -> ( ( 1st ` ( G ` j ) ) e. RR /\ ( 2nd ` ( G ` j ) ) e. RR /\ ( 1st ` ( G ` j ) ) <_ ( 2nd ` ( G ` j ) ) ) ) |
|
| 98 | 83 84 97 | syl2an | |- ( ( ( ph /\ ( m e. NN /\ ( abs ` ( ( T ` m ) - sup ( ran T , RR* , < ) ) ) < C ) ) /\ j e. ( 1 ... m ) ) -> ( ( 1st ` ( G ` j ) ) e. RR /\ ( 2nd ` ( G ` j ) ) e. RR /\ ( 1st ` ( G ` j ) ) <_ ( 2nd ` ( G ` j ) ) ) ) |
| 99 | ovolioo | |- ( ( ( 1st ` ( G ` j ) ) e. RR /\ ( 2nd ` ( G ` j ) ) e. RR /\ ( 1st ` ( G ` j ) ) <_ ( 2nd ` ( G ` j ) ) ) -> ( vol* ` ( ( 1st ` ( G ` j ) ) (,) ( 2nd ` ( G ` j ) ) ) ) = ( ( 2nd ` ( G ` j ) ) - ( 1st ` ( G ` j ) ) ) ) |
|
| 100 | 98 99 | syl | |- ( ( ( ph /\ ( m e. NN /\ ( abs ` ( ( T ` m ) - sup ( ran T , RR* , < ) ) ) < C ) ) /\ j e. ( 1 ... m ) ) -> ( vol* ` ( ( 1st ` ( G ` j ) ) (,) ( 2nd ` ( G ` j ) ) ) ) = ( ( 2nd ` ( G ` j ) ) - ( 1st ` ( G ` j ) ) ) ) |
| 101 | 96 100 | eqtrd | |- ( ( ( ph /\ ( m e. NN /\ ( abs ` ( ( T ` m ) - sup ( ran T , RR* , < ) ) ) < C ) ) /\ j e. ( 1 ... m ) ) -> ( vol* ` ( (,) ` ( G ` j ) ) ) = ( ( 2nd ` ( G ` j ) ) - ( 1st ` ( G ` j ) ) ) ) |
| 102 | 98 | simp2d | |- ( ( ( ph /\ ( m e. NN /\ ( abs ` ( ( T ` m ) - sup ( ran T , RR* , < ) ) ) < C ) ) /\ j e. ( 1 ... m ) ) -> ( 2nd ` ( G ` j ) ) e. RR ) |
| 103 | 98 | simp1d | |- ( ( ( ph /\ ( m e. NN /\ ( abs ` ( ( T ` m ) - sup ( ran T , RR* , < ) ) ) < C ) ) /\ j e. ( 1 ... m ) ) -> ( 1st ` ( G ` j ) ) e. RR ) |
| 104 | 102 103 | resubcld | |- ( ( ( ph /\ ( m e. NN /\ ( abs ` ( ( T ` m ) - sup ( ran T , RR* , < ) ) ) < C ) ) /\ j e. ( 1 ... m ) ) -> ( ( 2nd ` ( G ` j ) ) - ( 1st ` ( G ` j ) ) ) e. RR ) |
| 105 | 101 104 | eqeltrd | |- ( ( ( ph /\ ( m e. NN /\ ( abs ` ( ( T ` m ) - sup ( ran T , RR* , < ) ) ) < C ) ) /\ j e. ( 1 ... m ) ) -> ( vol* ` ( (,) ` ( G ` j ) ) ) e. RR ) |
| 106 | 105 | ad2antrr | |- ( ( ( ( ( ph /\ ( m e. NN /\ ( abs ` ( ( T ` m ) - sup ( ran T , RR* , < ) ) ) < C ) ) /\ j e. ( 1 ... m ) ) /\ n e. NN ) /\ i e. ( 1 ... n ) ) -> ( vol* ` ( (,) ` ( G ` j ) ) ) e. RR ) |
| 107 | ovolsscl | |- ( ( ( ( (,) ` ( F ` i ) ) i^i ( (,) ` ( G ` j ) ) ) C_ ( (,) ` ( G ` j ) ) /\ ( (,) ` ( G ` j ) ) C_ RR /\ ( vol* ` ( (,) ` ( G ` j ) ) ) e. RR ) -> ( vol* ` ( ( (,) ` ( F ` i ) ) i^i ( (,) ` ( G ` j ) ) ) ) e. RR ) |
|
| 108 | 82 95 106 107 | mp3an2i | |- ( ( ( ( ( ph /\ ( m e. NN /\ ( abs ` ( ( T ` m ) - sup ( ran T , RR* , < ) ) ) < C ) ) /\ j e. ( 1 ... m ) ) /\ n e. NN ) /\ i e. ( 1 ... n ) ) -> ( vol* ` ( ( (,) ` ( F ` i ) ) i^i ( (,) ` ( G ` j ) ) ) ) e. RR ) |
| 109 | 108 | recnd | |- ( ( ( ( ( ph /\ ( m e. NN /\ ( abs ` ( ( T ` m ) - sup ( ran T , RR* , < ) ) ) < C ) ) /\ j e. ( 1 ... m ) ) /\ n e. NN ) /\ i e. ( 1 ... n ) ) -> ( vol* ` ( ( (,) ` ( F ` i ) ) i^i ( (,) ` ( G ` j ) ) ) ) e. CC ) |
| 110 | 79 81 109 | fsumser | |- ( ( ( ( ph /\ ( m e. NN /\ ( abs ` ( ( T ` m ) - sup ( ran T , RR* , < ) ) ) < C ) ) /\ j e. ( 1 ... m ) ) /\ n e. NN ) -> sum_ i e. ( 1 ... n ) ( vol* ` ( ( (,) ` ( F ` i ) ) i^i ( (,) ` ( G ` j ) ) ) ) = ( seq 1 ( + , ( vol* o. ( z e. NN |-> ( ( (,) ` ( F ` z ) ) i^i ( (,) ` ( G ` j ) ) ) ) ) ) ` n ) ) |
| 111 | 110 | eqcomd | |- ( ( ( ( ph /\ ( m e. NN /\ ( abs ` ( ( T ` m ) - sup ( ran T , RR* , < ) ) ) < C ) ) /\ j e. ( 1 ... m ) ) /\ n e. NN ) -> ( seq 1 ( + , ( vol* o. ( z e. NN |-> ( ( (,) ` ( F ` z ) ) i^i ( (,) ` ( G ` j ) ) ) ) ) ) ` n ) = sum_ i e. ( 1 ... n ) ( vol* ` ( ( (,) ` ( F ` i ) ) i^i ( (,) ` ( G ` j ) ) ) ) ) |
| 112 | 2fveq3 | |- ( z = k -> ( (,) ` ( F ` z ) ) = ( (,) ` ( F ` k ) ) ) |
|
| 113 | 112 | ineq1d | |- ( z = k -> ( ( (,) ` ( F ` z ) ) i^i ( (,) ` ( G ` j ) ) ) = ( ( (,) ` ( F ` k ) ) i^i ( (,) ` ( G ` j ) ) ) ) |
| 114 | 113 | cbvmptv | |- ( z e. NN |-> ( ( (,) ` ( F ` z ) ) i^i ( (,) ` ( G ` j ) ) ) ) = ( k e. NN |-> ( ( (,) ` ( F ` k ) ) i^i ( (,) ` ( G ` j ) ) ) ) |
| 115 | eqeq1 | |- ( z = x -> ( z = (/) <-> x = (/) ) ) |
|
| 116 | infeq1 | |- ( z = x -> inf ( z , RR* , < ) = inf ( x , RR* , < ) ) |
|
| 117 | supeq1 | |- ( z = x -> sup ( z , RR* , < ) = sup ( x , RR* , < ) ) |
|
| 118 | 116 117 | opeq12d | |- ( z = x -> <. inf ( z , RR* , < ) , sup ( z , RR* , < ) >. = <. inf ( x , RR* , < ) , sup ( x , RR* , < ) >. ) |
| 119 | 115 118 | ifbieq2d | |- ( z = x -> if ( z = (/) , <. 0 , 0 >. , <. inf ( z , RR* , < ) , sup ( z , RR* , < ) >. ) = if ( x = (/) , <. 0 , 0 >. , <. inf ( x , RR* , < ) , sup ( x , RR* , < ) >. ) ) |
| 120 | 119 | cbvmptv | |- ( z e. ran (,) |-> if ( z = (/) , <. 0 , 0 >. , <. inf ( z , RR* , < ) , sup ( z , RR* , < ) >. ) ) = ( x e. ran (,) |-> if ( x = (/) , <. 0 , 0 >. , <. inf ( x , RR* , < ) , sup ( x , RR* , < ) >. ) ) |
| 121 | 1 2 3 4 5 6 7 8 9 10 114 120 | uniioombllem2 | |- ( ( ph /\ j e. NN ) -> seq 1 ( + , ( vol* o. ( z e. NN |-> ( ( (,) ` ( F ` z ) ) i^i ( (,) ` ( G ` j ) ) ) ) ) ) ~~> ( vol* ` ( ( (,) ` ( G ` j ) ) i^i A ) ) ) |
| 122 | 84 121 | sylan2 | |- ( ( ph /\ j e. ( 1 ... m ) ) -> seq 1 ( + , ( vol* o. ( z e. NN |-> ( ( (,) ` ( F ` z ) ) i^i ( (,) ` ( G ` j ) ) ) ) ) ) ~~> ( vol* ` ( ( (,) ` ( G ` j ) ) i^i A ) ) ) |
| 123 | 122 | adantlr | |- ( ( ( ph /\ ( m e. NN /\ ( abs ` ( ( T ` m ) - sup ( ran T , RR* , < ) ) ) < C ) ) /\ j e. ( 1 ... m ) ) -> seq 1 ( + , ( vol* o. ( z e. NN |-> ( ( (,) ` ( F ` z ) ) i^i ( (,) ` ( G ` j ) ) ) ) ) ) ~~> ( vol* ` ( ( (,) ` ( G ` j ) ) i^i A ) ) ) |
| 124 | 11 57 61 111 123 | climi2 | |- ( ( ( ph /\ ( m e. NN /\ ( abs ` ( ( T ` m ) - sup ( ran T , RR* , < ) ) ) < C ) ) /\ j e. ( 1 ... m ) ) -> E. a e. NN A. n e. ( ZZ>= ` a ) ( abs ` ( sum_ i e. ( 1 ... n ) ( vol* ` ( ( (,) ` ( F ` i ) ) i^i ( (,) ` ( G ` j ) ) ) ) - ( vol* ` ( ( (,) ` ( G ` j ) ) i^i A ) ) ) ) < ( C / m ) ) |
| 125 | 1z | |- 1 e. ZZ |
|
| 126 | 11 | rexuz3 | |- ( 1 e. ZZ -> ( E. a e. NN A. n e. ( ZZ>= ` a ) ( abs ` ( sum_ i e. ( 1 ... n ) ( vol* ` ( ( (,) ` ( F ` i ) ) i^i ( (,) ` ( G ` j ) ) ) ) - ( vol* ` ( ( (,) ` ( G ` j ) ) i^i A ) ) ) ) < ( C / m ) <-> E. a e. ZZ A. n e. ( ZZ>= ` a ) ( abs ` ( sum_ i e. ( 1 ... n ) ( vol* ` ( ( (,) ` ( F ` i ) ) i^i ( (,) ` ( G ` j ) ) ) ) - ( vol* ` ( ( (,) ` ( G ` j ) ) i^i A ) ) ) ) < ( C / m ) ) ) |
| 127 | 125 126 | ax-mp | |- ( E. a e. NN A. n e. ( ZZ>= ` a ) ( abs ` ( sum_ i e. ( 1 ... n ) ( vol* ` ( ( (,) ` ( F ` i ) ) i^i ( (,) ` ( G ` j ) ) ) ) - ( vol* ` ( ( (,) ` ( G ` j ) ) i^i A ) ) ) ) < ( C / m ) <-> E. a e. ZZ A. n e. ( ZZ>= ` a ) ( abs ` ( sum_ i e. ( 1 ... n ) ( vol* ` ( ( (,) ` ( F ` i ) ) i^i ( (,) ` ( G ` j ) ) ) ) - ( vol* ` ( ( (,) ` ( G ` j ) ) i^i A ) ) ) ) < ( C / m ) ) |
| 128 | 124 127 | sylib | |- ( ( ( ph /\ ( m e. NN /\ ( abs ` ( ( T ` m ) - sup ( ran T , RR* , < ) ) ) < C ) ) /\ j e. ( 1 ... m ) ) -> E. a e. ZZ A. n e. ( ZZ>= ` a ) ( abs ` ( sum_ i e. ( 1 ... n ) ( vol* ` ( ( (,) ` ( F ` i ) ) i^i ( (,) ` ( G ` j ) ) ) ) - ( vol* ` ( ( (,) ` ( G ` j ) ) i^i A ) ) ) ) < ( C / m ) ) |
| 129 | 128 | ralrimiva | |- ( ( ph /\ ( m e. NN /\ ( abs ` ( ( T ` m ) - sup ( ran T , RR* , < ) ) ) < C ) ) -> A. j e. ( 1 ... m ) E. a e. ZZ A. n e. ( ZZ>= ` a ) ( abs ` ( sum_ i e. ( 1 ... n ) ( vol* ` ( ( (,) ` ( F ` i ) ) i^i ( (,) ` ( G ` j ) ) ) ) - ( vol* ` ( ( (,) ` ( G ` j ) ) i^i A ) ) ) ) < ( C / m ) ) |
| 130 | fzfi | |- ( 1 ... m ) e. Fin |
|
| 131 | rexfiuz | |- ( ( 1 ... m ) e. Fin -> ( E. a e. ZZ A. n e. ( ZZ>= ` a ) A. j e. ( 1 ... m ) ( abs ` ( sum_ i e. ( 1 ... n ) ( vol* ` ( ( (,) ` ( F ` i ) ) i^i ( (,) ` ( G ` j ) ) ) ) - ( vol* ` ( ( (,) ` ( G ` j ) ) i^i A ) ) ) ) < ( C / m ) <-> A. j e. ( 1 ... m ) E. a e. ZZ A. n e. ( ZZ>= ` a ) ( abs ` ( sum_ i e. ( 1 ... n ) ( vol* ` ( ( (,) ` ( F ` i ) ) i^i ( (,) ` ( G ` j ) ) ) ) - ( vol* ` ( ( (,) ` ( G ` j ) ) i^i A ) ) ) ) < ( C / m ) ) ) |
|
| 132 | 130 131 | ax-mp | |- ( E. a e. ZZ A. n e. ( ZZ>= ` a ) A. j e. ( 1 ... m ) ( abs ` ( sum_ i e. ( 1 ... n ) ( vol* ` ( ( (,) ` ( F ` i ) ) i^i ( (,) ` ( G ` j ) ) ) ) - ( vol* ` ( ( (,) ` ( G ` j ) ) i^i A ) ) ) ) < ( C / m ) <-> A. j e. ( 1 ... m ) E. a e. ZZ A. n e. ( ZZ>= ` a ) ( abs ` ( sum_ i e. ( 1 ... n ) ( vol* ` ( ( (,) ` ( F ` i ) ) i^i ( (,) ` ( G ` j ) ) ) ) - ( vol* ` ( ( (,) ` ( G ` j ) ) i^i A ) ) ) ) < ( C / m ) ) |
| 133 | 129 132 | sylibr | |- ( ( ph /\ ( m e. NN /\ ( abs ` ( ( T ` m ) - sup ( ran T , RR* , < ) ) ) < C ) ) -> E. a e. ZZ A. n e. ( ZZ>= ` a ) A. j e. ( 1 ... m ) ( abs ` ( sum_ i e. ( 1 ... n ) ( vol* ` ( ( (,) ` ( F ` i ) ) i^i ( (,) ` ( G ` j ) ) ) ) - ( vol* ` ( ( (,) ` ( G ` j ) ) i^i A ) ) ) ) < ( C / m ) ) |
| 134 | 11 | rexuz3 | |- ( 1 e. ZZ -> ( E. a e. NN A. n e. ( ZZ>= ` a ) A. j e. ( 1 ... m ) ( abs ` ( sum_ i e. ( 1 ... n ) ( vol* ` ( ( (,) ` ( F ` i ) ) i^i ( (,) ` ( G ` j ) ) ) ) - ( vol* ` ( ( (,) ` ( G ` j ) ) i^i A ) ) ) ) < ( C / m ) <-> E. a e. ZZ A. n e. ( ZZ>= ` a ) A. j e. ( 1 ... m ) ( abs ` ( sum_ i e. ( 1 ... n ) ( vol* ` ( ( (,) ` ( F ` i ) ) i^i ( (,) ` ( G ` j ) ) ) ) - ( vol* ` ( ( (,) ` ( G ` j ) ) i^i A ) ) ) ) < ( C / m ) ) ) |
| 135 | 125 134 | ax-mp | |- ( E. a e. NN A. n e. ( ZZ>= ` a ) A. j e. ( 1 ... m ) ( abs ` ( sum_ i e. ( 1 ... n ) ( vol* ` ( ( (,) ` ( F ` i ) ) i^i ( (,) ` ( G ` j ) ) ) ) - ( vol* ` ( ( (,) ` ( G ` j ) ) i^i A ) ) ) ) < ( C / m ) <-> E. a e. ZZ A. n e. ( ZZ>= ` a ) A. j e. ( 1 ... m ) ( abs ` ( sum_ i e. ( 1 ... n ) ( vol* ` ( ( (,) ` ( F ` i ) ) i^i ( (,) ` ( G ` j ) ) ) ) - ( vol* ` ( ( (,) ` ( G ` j ) ) i^i A ) ) ) ) < ( C / m ) ) |
| 136 | 133 135 | sylibr | |- ( ( ph /\ ( m e. NN /\ ( abs ` ( ( T ` m ) - sup ( ran T , RR* , < ) ) ) < C ) ) -> E. a e. NN A. n e. ( ZZ>= ` a ) A. j e. ( 1 ... m ) ( abs ` ( sum_ i e. ( 1 ... n ) ( vol* ` ( ( (,) ` ( F ` i ) ) i^i ( (,) ` ( G ` j ) ) ) ) - ( vol* ` ( ( (,) ` ( G ` j ) ) i^i A ) ) ) ) < ( C / m ) ) |
| 137 | 11 | r19.2uz | |- ( E. a e. NN A. n e. ( ZZ>= ` a ) A. j e. ( 1 ... m ) ( abs ` ( sum_ i e. ( 1 ... n ) ( vol* ` ( ( (,) ` ( F ` i ) ) i^i ( (,) ` ( G ` j ) ) ) ) - ( vol* ` ( ( (,) ` ( G ` j ) ) i^i A ) ) ) ) < ( C / m ) -> E. n e. NN A. j e. ( 1 ... m ) ( abs ` ( sum_ i e. ( 1 ... n ) ( vol* ` ( ( (,) ` ( F ` i ) ) i^i ( (,) ` ( G ` j ) ) ) ) - ( vol* ` ( ( (,) ` ( G ` j ) ) i^i A ) ) ) ) < ( C / m ) ) |
| 138 | 136 137 | syl | |- ( ( ph /\ ( m e. NN /\ ( abs ` ( ( T ` m ) - sup ( ran T , RR* , < ) ) ) < C ) ) -> E. n e. NN A. j e. ( 1 ... m ) ( abs ` ( sum_ i e. ( 1 ... n ) ( vol* ` ( ( (,) ` ( F ` i ) ) i^i ( (,) ` ( G ` j ) ) ) ) - ( vol* ` ( ( (,) ` ( G ` j ) ) i^i A ) ) ) ) < ( C / m ) ) |
| 139 | 1 | adantr | |- ( ( ph /\ ( ( m e. NN /\ ( abs ` ( ( T ` m ) - sup ( ran T , RR* , < ) ) ) < C ) /\ ( n e. NN /\ A. j e. ( 1 ... m ) ( abs ` ( sum_ i e. ( 1 ... n ) ( vol* ` ( ( (,) ` ( F ` i ) ) i^i ( (,) ` ( G ` j ) ) ) ) - ( vol* ` ( ( (,) ` ( G ` j ) ) i^i A ) ) ) ) < ( C / m ) ) ) ) -> F : NN --> ( <_ i^i ( RR X. RR ) ) ) |
| 140 | 2 | adantr | |- ( ( ph /\ ( ( m e. NN /\ ( abs ` ( ( T ` m ) - sup ( ran T , RR* , < ) ) ) < C ) /\ ( n e. NN /\ A. j e. ( 1 ... m ) ( abs ` ( sum_ i e. ( 1 ... n ) ( vol* ` ( ( (,) ` ( F ` i ) ) i^i ( (,) ` ( G ` j ) ) ) ) - ( vol* ` ( ( (,) ` ( G ` j ) ) i^i A ) ) ) ) < ( C / m ) ) ) ) -> Disj_ x e. NN ( (,) ` ( F ` x ) ) ) |
| 141 | 5 | adantr | |- ( ( ph /\ ( ( m e. NN /\ ( abs ` ( ( T ` m ) - sup ( ran T , RR* , < ) ) ) < C ) /\ ( n e. NN /\ A. j e. ( 1 ... m ) ( abs ` ( sum_ i e. ( 1 ... n ) ( vol* ` ( ( (,) ` ( F ` i ) ) i^i ( (,) ` ( G ` j ) ) ) ) - ( vol* ` ( ( (,) ` ( G ` j ) ) i^i A ) ) ) ) < ( C / m ) ) ) ) -> ( vol* ` E ) e. RR ) |
| 142 | 6 | adantr | |- ( ( ph /\ ( ( m e. NN /\ ( abs ` ( ( T ` m ) - sup ( ran T , RR* , < ) ) ) < C ) /\ ( n e. NN /\ A. j e. ( 1 ... m ) ( abs ` ( sum_ i e. ( 1 ... n ) ( vol* ` ( ( (,) ` ( F ` i ) ) i^i ( (,) ` ( G ` j ) ) ) ) - ( vol* ` ( ( (,) ` ( G ` j ) ) i^i A ) ) ) ) < ( C / m ) ) ) ) -> C e. RR+ ) |
| 143 | 7 | adantr | |- ( ( ph /\ ( ( m e. NN /\ ( abs ` ( ( T ` m ) - sup ( ran T , RR* , < ) ) ) < C ) /\ ( n e. NN /\ A. j e. ( 1 ... m ) ( abs ` ( sum_ i e. ( 1 ... n ) ( vol* ` ( ( (,) ` ( F ` i ) ) i^i ( (,) ` ( G ` j ) ) ) ) - ( vol* ` ( ( (,) ` ( G ` j ) ) i^i A ) ) ) ) < ( C / m ) ) ) ) -> G : NN --> ( <_ i^i ( RR X. RR ) ) ) |
| 144 | 8 | adantr | |- ( ( ph /\ ( ( m e. NN /\ ( abs ` ( ( T ` m ) - sup ( ran T , RR* , < ) ) ) < C ) /\ ( n e. NN /\ A. j e. ( 1 ... m ) ( abs ` ( sum_ i e. ( 1 ... n ) ( vol* ` ( ( (,) ` ( F ` i ) ) i^i ( (,) ` ( G ` j ) ) ) ) - ( vol* ` ( ( (,) ` ( G ` j ) ) i^i A ) ) ) ) < ( C / m ) ) ) ) -> E C_ U. ran ( (,) o. G ) ) |
| 145 | 10 | adantr | |- ( ( ph /\ ( ( m e. NN /\ ( abs ` ( ( T ` m ) - sup ( ran T , RR* , < ) ) ) < C ) /\ ( n e. NN /\ A. j e. ( 1 ... m ) ( abs ` ( sum_ i e. ( 1 ... n ) ( vol* ` ( ( (,) ` ( F ` i ) ) i^i ( (,) ` ( G ` j ) ) ) ) - ( vol* ` ( ( (,) ` ( G ` j ) ) i^i A ) ) ) ) < ( C / m ) ) ) ) -> sup ( ran T , RR* , < ) <_ ( ( vol* ` E ) + C ) ) |
| 146 | simprll | |- ( ( ph /\ ( ( m e. NN /\ ( abs ` ( ( T ` m ) - sup ( ran T , RR* , < ) ) ) < C ) /\ ( n e. NN /\ A. j e. ( 1 ... m ) ( abs ` ( sum_ i e. ( 1 ... n ) ( vol* ` ( ( (,) ` ( F ` i ) ) i^i ( (,) ` ( G ` j ) ) ) ) - ( vol* ` ( ( (,) ` ( G ` j ) ) i^i A ) ) ) ) < ( C / m ) ) ) ) -> m e. NN ) |
|
| 147 | simprlr | |- ( ( ph /\ ( ( m e. NN /\ ( abs ` ( ( T ` m ) - sup ( ran T , RR* , < ) ) ) < C ) /\ ( n e. NN /\ A. j e. ( 1 ... m ) ( abs ` ( sum_ i e. ( 1 ... n ) ( vol* ` ( ( (,) ` ( F ` i ) ) i^i ( (,) ` ( G ` j ) ) ) ) - ( vol* ` ( ( (,) ` ( G ` j ) ) i^i A ) ) ) ) < ( C / m ) ) ) ) -> ( abs ` ( ( T ` m ) - sup ( ran T , RR* , < ) ) ) < C ) |
|
| 148 | eqid | |- U. ( ( (,) o. G ) " ( 1 ... m ) ) = U. ( ( (,) o. G ) " ( 1 ... m ) ) |
|
| 149 | simprrl | |- ( ( ph /\ ( ( m e. NN /\ ( abs ` ( ( T ` m ) - sup ( ran T , RR* , < ) ) ) < C ) /\ ( n e. NN /\ A. j e. ( 1 ... m ) ( abs ` ( sum_ i e. ( 1 ... n ) ( vol* ` ( ( (,) ` ( F ` i ) ) i^i ( (,) ` ( G ` j ) ) ) ) - ( vol* ` ( ( (,) ` ( G ` j ) ) i^i A ) ) ) ) < ( C / m ) ) ) ) -> n e. NN ) |
|
| 150 | simprrr | |- ( ( ph /\ ( ( m e. NN /\ ( abs ` ( ( T ` m ) - sup ( ran T , RR* , < ) ) ) < C ) /\ ( n e. NN /\ A. j e. ( 1 ... m ) ( abs ` ( sum_ i e. ( 1 ... n ) ( vol* ` ( ( (,) ` ( F ` i ) ) i^i ( (,) ` ( G ` j ) ) ) ) - ( vol* ` ( ( (,) ` ( G ` j ) ) i^i A ) ) ) ) < ( C / m ) ) ) ) -> A. j e. ( 1 ... m ) ( abs ` ( sum_ i e. ( 1 ... n ) ( vol* ` ( ( (,) ` ( F ` i ) ) i^i ( (,) ` ( G ` j ) ) ) ) - ( vol* ` ( ( (,) ` ( G ` j ) ) i^i A ) ) ) ) < ( C / m ) ) |
|
| 151 | 2fveq3 | |- ( i = z -> ( (,) ` ( F ` i ) ) = ( (,) ` ( F ` z ) ) ) |
|
| 152 | 151 | ineq1d | |- ( i = z -> ( ( (,) ` ( F ` i ) ) i^i ( (,) ` ( G ` j ) ) ) = ( ( (,) ` ( F ` z ) ) i^i ( (,) ` ( G ` j ) ) ) ) |
| 153 | 152 | fveq2d | |- ( i = z -> ( vol* ` ( ( (,) ` ( F ` i ) ) i^i ( (,) ` ( G ` j ) ) ) ) = ( vol* ` ( ( (,) ` ( F ` z ) ) i^i ( (,) ` ( G ` j ) ) ) ) ) |
| 154 | 153 | cbvsumv | |- sum_ i e. ( 1 ... n ) ( vol* ` ( ( (,) ` ( F ` i ) ) i^i ( (,) ` ( G ` j ) ) ) ) = sum_ z e. ( 1 ... n ) ( vol* ` ( ( (,) ` ( F ` z ) ) i^i ( (,) ` ( G ` j ) ) ) ) |
| 155 | 2fveq3 | |- ( j = k -> ( (,) ` ( G ` j ) ) = ( (,) ` ( G ` k ) ) ) |
|
| 156 | 155 | ineq2d | |- ( j = k -> ( ( (,) ` ( F ` z ) ) i^i ( (,) ` ( G ` j ) ) ) = ( ( (,) ` ( F ` z ) ) i^i ( (,) ` ( G ` k ) ) ) ) |
| 157 | 156 | fveq2d | |- ( j = k -> ( vol* ` ( ( (,) ` ( F ` z ) ) i^i ( (,) ` ( G ` j ) ) ) ) = ( vol* ` ( ( (,) ` ( F ` z ) ) i^i ( (,) ` ( G ` k ) ) ) ) ) |
| 158 | 157 | sumeq2sdv | |- ( j = k -> sum_ z e. ( 1 ... n ) ( vol* ` ( ( (,) ` ( F ` z ) ) i^i ( (,) ` ( G ` j ) ) ) ) = sum_ z e. ( 1 ... n ) ( vol* ` ( ( (,) ` ( F ` z ) ) i^i ( (,) ` ( G ` k ) ) ) ) ) |
| 159 | 154 158 | eqtrid | |- ( j = k -> sum_ i e. ( 1 ... n ) ( vol* ` ( ( (,) ` ( F ` i ) ) i^i ( (,) ` ( G ` j ) ) ) ) = sum_ z e. ( 1 ... n ) ( vol* ` ( ( (,) ` ( F ` z ) ) i^i ( (,) ` ( G ` k ) ) ) ) ) |
| 160 | 155 | ineq1d | |- ( j = k -> ( ( (,) ` ( G ` j ) ) i^i A ) = ( ( (,) ` ( G ` k ) ) i^i A ) ) |
| 161 | 160 | fveq2d | |- ( j = k -> ( vol* ` ( ( (,) ` ( G ` j ) ) i^i A ) ) = ( vol* ` ( ( (,) ` ( G ` k ) ) i^i A ) ) ) |
| 162 | 159 161 | oveq12d | |- ( j = k -> ( sum_ i e. ( 1 ... n ) ( vol* ` ( ( (,) ` ( F ` i ) ) i^i ( (,) ` ( G ` j ) ) ) ) - ( vol* ` ( ( (,) ` ( G ` j ) ) i^i A ) ) ) = ( sum_ z e. ( 1 ... n ) ( vol* ` ( ( (,) ` ( F ` z ) ) i^i ( (,) ` ( G ` k ) ) ) ) - ( vol* ` ( ( (,) ` ( G ` k ) ) i^i A ) ) ) ) |
| 163 | 162 | fveq2d | |- ( j = k -> ( abs ` ( sum_ i e. ( 1 ... n ) ( vol* ` ( ( (,) ` ( F ` i ) ) i^i ( (,) ` ( G ` j ) ) ) ) - ( vol* ` ( ( (,) ` ( G ` j ) ) i^i A ) ) ) ) = ( abs ` ( sum_ z e. ( 1 ... n ) ( vol* ` ( ( (,) ` ( F ` z ) ) i^i ( (,) ` ( G ` k ) ) ) ) - ( vol* ` ( ( (,) ` ( G ` k ) ) i^i A ) ) ) ) ) |
| 164 | 163 | breq1d | |- ( j = k -> ( ( abs ` ( sum_ i e. ( 1 ... n ) ( vol* ` ( ( (,) ` ( F ` i ) ) i^i ( (,) ` ( G ` j ) ) ) ) - ( vol* ` ( ( (,) ` ( G ` j ) ) i^i A ) ) ) ) < ( C / m ) <-> ( abs ` ( sum_ z e. ( 1 ... n ) ( vol* ` ( ( (,) ` ( F ` z ) ) i^i ( (,) ` ( G ` k ) ) ) ) - ( vol* ` ( ( (,) ` ( G ` k ) ) i^i A ) ) ) ) < ( C / m ) ) ) |
| 165 | 164 | cbvralvw | |- ( A. j e. ( 1 ... m ) ( abs ` ( sum_ i e. ( 1 ... n ) ( vol* ` ( ( (,) ` ( F ` i ) ) i^i ( (,) ` ( G ` j ) ) ) ) - ( vol* ` ( ( (,) ` ( G ` j ) ) i^i A ) ) ) ) < ( C / m ) <-> A. k e. ( 1 ... m ) ( abs ` ( sum_ z e. ( 1 ... n ) ( vol* ` ( ( (,) ` ( F ` z ) ) i^i ( (,) ` ( G ` k ) ) ) ) - ( vol* ` ( ( (,) ` ( G ` k ) ) i^i A ) ) ) ) < ( C / m ) ) |
| 166 | 150 165 | sylib | |- ( ( ph /\ ( ( m e. NN /\ ( abs ` ( ( T ` m ) - sup ( ran T , RR* , < ) ) ) < C ) /\ ( n e. NN /\ A. j e. ( 1 ... m ) ( abs ` ( sum_ i e. ( 1 ... n ) ( vol* ` ( ( (,) ` ( F ` i ) ) i^i ( (,) ` ( G ` j ) ) ) ) - ( vol* ` ( ( (,) ` ( G ` j ) ) i^i A ) ) ) ) < ( C / m ) ) ) ) -> A. k e. ( 1 ... m ) ( abs ` ( sum_ z e. ( 1 ... n ) ( vol* ` ( ( (,) ` ( F ` z ) ) i^i ( (,) ` ( G ` k ) ) ) ) - ( vol* ` ( ( (,) ` ( G ` k ) ) i^i A ) ) ) ) < ( C / m ) ) |
| 167 | eqid | |- U. ( ( (,) o. F ) " ( 1 ... n ) ) = U. ( ( (,) o. F ) " ( 1 ... n ) ) |
|
| 168 | 139 140 3 4 141 142 143 144 9 145 146 147 148 149 166 167 | uniioombllem5 | |- ( ( ph /\ ( ( m e. NN /\ ( abs ` ( ( T ` m ) - sup ( ran T , RR* , < ) ) ) < C ) /\ ( n e. NN /\ A. j e. ( 1 ... m ) ( abs ` ( sum_ i e. ( 1 ... n ) ( vol* ` ( ( (,) ` ( F ` i ) ) i^i ( (,) ` ( G ` j ) ) ) ) - ( vol* ` ( ( (,) ` ( G ` j ) ) i^i A ) ) ) ) < ( C / m ) ) ) ) -> ( ( vol* ` ( E i^i A ) ) + ( vol* ` ( E \ A ) ) ) <_ ( ( vol* ` E ) + ( 4 x. C ) ) ) |
| 169 | 168 | anassrs | |- ( ( ( ph /\ ( m e. NN /\ ( abs ` ( ( T ` m ) - sup ( ran T , RR* , < ) ) ) < C ) ) /\ ( n e. NN /\ A. j e. ( 1 ... m ) ( abs ` ( sum_ i e. ( 1 ... n ) ( vol* ` ( ( (,) ` ( F ` i ) ) i^i ( (,) ` ( G ` j ) ) ) ) - ( vol* ` ( ( (,) ` ( G ` j ) ) i^i A ) ) ) ) < ( C / m ) ) ) -> ( ( vol* ` ( E i^i A ) ) + ( vol* ` ( E \ A ) ) ) <_ ( ( vol* ` E ) + ( 4 x. C ) ) ) |
| 170 | 138 169 | rexlimddv | |- ( ( ph /\ ( m e. NN /\ ( abs ` ( ( T ` m ) - sup ( ran T , RR* , < ) ) ) < C ) ) -> ( ( vol* ` ( E i^i A ) ) + ( vol* ` ( E \ A ) ) ) <_ ( ( vol* ` E ) + ( 4 x. C ) ) ) |
| 171 | 56 170 | rexlimddv | |- ( ph -> ( ( vol* ` ( E i^i A ) ) + ( vol* ` ( E \ A ) ) ) <_ ( ( vol* ` E ) + ( 4 x. C ) ) ) |