This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Convergence of a sequence of complex numbers. (Contributed by NM, 11-Jan-2007) (Revised by Mario Carneiro, 31-Jan-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | climi.1 | |- Z = ( ZZ>= ` M ) |
|
| climi.2 | |- ( ph -> M e. ZZ ) |
||
| climi.3 | |- ( ph -> C e. RR+ ) |
||
| climi.4 | |- ( ( ph /\ k e. Z ) -> ( F ` k ) = B ) |
||
| climi.5 | |- ( ph -> F ~~> A ) |
||
| Assertion | climi2 | |- ( ph -> E. j e. Z A. k e. ( ZZ>= ` j ) ( abs ` ( B - A ) ) < C ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | climi.1 | |- Z = ( ZZ>= ` M ) |
|
| 2 | climi.2 | |- ( ph -> M e. ZZ ) |
|
| 3 | climi.3 | |- ( ph -> C e. RR+ ) |
|
| 4 | climi.4 | |- ( ( ph /\ k e. Z ) -> ( F ` k ) = B ) |
|
| 5 | climi.5 | |- ( ph -> F ~~> A ) |
|
| 6 | 1 2 3 4 5 | climi | |- ( ph -> E. j e. Z A. k e. ( ZZ>= ` j ) ( B e. CC /\ ( abs ` ( B - A ) ) < C ) ) |
| 7 | simpr | |- ( ( B e. CC /\ ( abs ` ( B - A ) ) < C ) -> ( abs ` ( B - A ) ) < C ) |
|
| 8 | 7 | ralimi | |- ( A. k e. ( ZZ>= ` j ) ( B e. CC /\ ( abs ` ( B - A ) ) < C ) -> A. k e. ( ZZ>= ` j ) ( abs ` ( B - A ) ) < C ) |
| 9 | 8 | reximi | |- ( E. j e. Z A. k e. ( ZZ>= ` j ) ( B e. CC /\ ( abs ` ( B - A ) ) < C ) -> E. j e. Z A. k e. ( ZZ>= ` j ) ( abs ` ( B - A ) ) < C ) |
| 10 | 6 9 | syl | |- ( ph -> E. j e. Z A. k e. ( ZZ>= ` j ) ( abs ` ( B - A ) ) < C ) |