This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A version of r19.2z for upper integer quantifiers. (Contributed by Mario Carneiro, 15-Feb-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | rexuz3.1 | |- Z = ( ZZ>= ` M ) |
|
| Assertion | r19.2uz | |- ( E. j e. Z A. k e. ( ZZ>= ` j ) ph -> E. k e. Z ph ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rexuz3.1 | |- Z = ( ZZ>= ` M ) |
|
| 2 | eluzelz | |- ( j e. ( ZZ>= ` M ) -> j e. ZZ ) |
|
| 3 | uzid | |- ( j e. ZZ -> j e. ( ZZ>= ` j ) ) |
|
| 4 | ne0i | |- ( j e. ( ZZ>= ` j ) -> ( ZZ>= ` j ) =/= (/) ) |
|
| 5 | 2 3 4 | 3syl | |- ( j e. ( ZZ>= ` M ) -> ( ZZ>= ` j ) =/= (/) ) |
| 6 | 5 1 | eleq2s | |- ( j e. Z -> ( ZZ>= ` j ) =/= (/) ) |
| 7 | r19.2z | |- ( ( ( ZZ>= ` j ) =/= (/) /\ A. k e. ( ZZ>= ` j ) ph ) -> E. k e. ( ZZ>= ` j ) ph ) |
|
| 8 | 6 7 | sylan | |- ( ( j e. Z /\ A. k e. ( ZZ>= ` j ) ph ) -> E. k e. ( ZZ>= ` j ) ph ) |
| 9 | 1 | uztrn2 | |- ( ( j e. Z /\ k e. ( ZZ>= ` j ) ) -> k e. Z ) |
| 10 | 9 | ex | |- ( j e. Z -> ( k e. ( ZZ>= ` j ) -> k e. Z ) ) |
| 11 | 10 | anim1d | |- ( j e. Z -> ( ( k e. ( ZZ>= ` j ) /\ ph ) -> ( k e. Z /\ ph ) ) ) |
| 12 | 11 | reximdv2 | |- ( j e. Z -> ( E. k e. ( ZZ>= ` j ) ph -> E. k e. Z ph ) ) |
| 13 | 12 | imp | |- ( ( j e. Z /\ E. k e. ( ZZ>= ` j ) ph ) -> E. k e. Z ph ) |
| 14 | 8 13 | syldan | |- ( ( j e. Z /\ A. k e. ( ZZ>= ` j ) ph ) -> E. k e. Z ph ) |
| 15 | 14 | rexlimiva | |- ( E. j e. Z A. k e. ( ZZ>= ` j ) ph -> E. k e. Z ph ) |