This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A finite interval of integers is finite. (Contributed by Jeff Madsen, 2-Sep-2009) (Revised by Mario Carneiro, 12-Mar-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | fzfi | |- ( M ... N ) e. Fin |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 0fi | |- (/) e. Fin |
|
| 2 | eleq1 | |- ( ( M ... N ) = (/) -> ( ( M ... N ) e. Fin <-> (/) e. Fin ) ) |
|
| 3 | 1 2 | mpbiri | |- ( ( M ... N ) = (/) -> ( M ... N ) e. Fin ) |
| 4 | fzn0 | |- ( ( M ... N ) =/= (/) <-> N e. ( ZZ>= ` M ) ) |
|
| 5 | onfin2 | |- _om = ( On i^i Fin ) |
|
| 6 | inss2 | |- ( On i^i Fin ) C_ Fin |
|
| 7 | 5 6 | eqsstri | |- _om C_ Fin |
| 8 | eqid | |- ( rec ( ( x e. _V |-> ( x + 1 ) ) , 0 ) |` _om ) = ( rec ( ( x e. _V |-> ( x + 1 ) ) , 0 ) |` _om ) |
|
| 9 | 8 | hashgf1o | |- ( rec ( ( x e. _V |-> ( x + 1 ) ) , 0 ) |` _om ) : _om -1-1-onto-> NN0 |
| 10 | peano2uz | |- ( N e. ( ZZ>= ` M ) -> ( N + 1 ) e. ( ZZ>= ` M ) ) |
|
| 11 | uznn0sub | |- ( ( N + 1 ) e. ( ZZ>= ` M ) -> ( ( N + 1 ) - M ) e. NN0 ) |
|
| 12 | 10 11 | syl | |- ( N e. ( ZZ>= ` M ) -> ( ( N + 1 ) - M ) e. NN0 ) |
| 13 | f1ocnvdm | |- ( ( ( rec ( ( x e. _V |-> ( x + 1 ) ) , 0 ) |` _om ) : _om -1-1-onto-> NN0 /\ ( ( N + 1 ) - M ) e. NN0 ) -> ( `' ( rec ( ( x e. _V |-> ( x + 1 ) ) , 0 ) |` _om ) ` ( ( N + 1 ) - M ) ) e. _om ) |
|
| 14 | 9 12 13 | sylancr | |- ( N e. ( ZZ>= ` M ) -> ( `' ( rec ( ( x e. _V |-> ( x + 1 ) ) , 0 ) |` _om ) ` ( ( N + 1 ) - M ) ) e. _om ) |
| 15 | 7 14 | sselid | |- ( N e. ( ZZ>= ` M ) -> ( `' ( rec ( ( x e. _V |-> ( x + 1 ) ) , 0 ) |` _om ) ` ( ( N + 1 ) - M ) ) e. Fin ) |
| 16 | 8 | fzen2 | |- ( N e. ( ZZ>= ` M ) -> ( M ... N ) ~~ ( `' ( rec ( ( x e. _V |-> ( x + 1 ) ) , 0 ) |` _om ) ` ( ( N + 1 ) - M ) ) ) |
| 17 | enfii | |- ( ( ( `' ( rec ( ( x e. _V |-> ( x + 1 ) ) , 0 ) |` _om ) ` ( ( N + 1 ) - M ) ) e. Fin /\ ( M ... N ) ~~ ( `' ( rec ( ( x e. _V |-> ( x + 1 ) ) , 0 ) |` _om ) ` ( ( N + 1 ) - M ) ) ) -> ( M ... N ) e. Fin ) |
|
| 18 | 15 16 17 | syl2anc | |- ( N e. ( ZZ>= ` M ) -> ( M ... N ) e. Fin ) |
| 19 | 4 18 | sylbi | |- ( ( M ... N ) =/= (/) -> ( M ... N ) e. Fin ) |
| 20 | 3 19 | pm2.61ine | |- ( M ... N ) e. Fin |