This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for uniioombl . (Contributed by Mario Carneiro, 26-Mar-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | uniioombl.1 | ⊢ ( 𝜑 → 𝐹 : ℕ ⟶ ( ≤ ∩ ( ℝ × ℝ ) ) ) | |
| uniioombl.2 | ⊢ ( 𝜑 → Disj 𝑥 ∈ ℕ ( (,) ‘ ( 𝐹 ‘ 𝑥 ) ) ) | ||
| uniioombl.3 | ⊢ 𝑆 = seq 1 ( + , ( ( abs ∘ − ) ∘ 𝐹 ) ) | ||
| uniioombl.a | ⊢ 𝐴 = ∪ ran ( (,) ∘ 𝐹 ) | ||
| uniioombl.e | ⊢ ( 𝜑 → ( vol* ‘ 𝐸 ) ∈ ℝ ) | ||
| uniioombl.c | ⊢ ( 𝜑 → 𝐶 ∈ ℝ+ ) | ||
| uniioombl.g | ⊢ ( 𝜑 → 𝐺 : ℕ ⟶ ( ≤ ∩ ( ℝ × ℝ ) ) ) | ||
| uniioombl.s | ⊢ ( 𝜑 → 𝐸 ⊆ ∪ ran ( (,) ∘ 𝐺 ) ) | ||
| uniioombl.t | ⊢ 𝑇 = seq 1 ( + , ( ( abs ∘ − ) ∘ 𝐺 ) ) | ||
| uniioombl.v | ⊢ ( 𝜑 → sup ( ran 𝑇 , ℝ* , < ) ≤ ( ( vol* ‘ 𝐸 ) + 𝐶 ) ) | ||
| Assertion | uniioombllem6 | ⊢ ( 𝜑 → ( ( vol* ‘ ( 𝐸 ∩ 𝐴 ) ) + ( vol* ‘ ( 𝐸 ∖ 𝐴 ) ) ) ≤ ( ( vol* ‘ 𝐸 ) + ( 4 · 𝐶 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | uniioombl.1 | ⊢ ( 𝜑 → 𝐹 : ℕ ⟶ ( ≤ ∩ ( ℝ × ℝ ) ) ) | |
| 2 | uniioombl.2 | ⊢ ( 𝜑 → Disj 𝑥 ∈ ℕ ( (,) ‘ ( 𝐹 ‘ 𝑥 ) ) ) | |
| 3 | uniioombl.3 | ⊢ 𝑆 = seq 1 ( + , ( ( abs ∘ − ) ∘ 𝐹 ) ) | |
| 4 | uniioombl.a | ⊢ 𝐴 = ∪ ran ( (,) ∘ 𝐹 ) | |
| 5 | uniioombl.e | ⊢ ( 𝜑 → ( vol* ‘ 𝐸 ) ∈ ℝ ) | |
| 6 | uniioombl.c | ⊢ ( 𝜑 → 𝐶 ∈ ℝ+ ) | |
| 7 | uniioombl.g | ⊢ ( 𝜑 → 𝐺 : ℕ ⟶ ( ≤ ∩ ( ℝ × ℝ ) ) ) | |
| 8 | uniioombl.s | ⊢ ( 𝜑 → 𝐸 ⊆ ∪ ran ( (,) ∘ 𝐺 ) ) | |
| 9 | uniioombl.t | ⊢ 𝑇 = seq 1 ( + , ( ( abs ∘ − ) ∘ 𝐺 ) ) | |
| 10 | uniioombl.v | ⊢ ( 𝜑 → sup ( ran 𝑇 , ℝ* , < ) ≤ ( ( vol* ‘ 𝐸 ) + 𝐶 ) ) | |
| 11 | nnuz | ⊢ ℕ = ( ℤ≥ ‘ 1 ) | |
| 12 | 1zzd | ⊢ ( 𝜑 → 1 ∈ ℤ ) | |
| 13 | eqidd | ⊢ ( ( 𝜑 ∧ 𝑚 ∈ ℕ ) → ( 𝑇 ‘ 𝑚 ) = ( 𝑇 ‘ 𝑚 ) ) | |
| 14 | eqidd | ⊢ ( ( 𝜑 ∧ 𝑎 ∈ ℕ ) → ( ( ( abs ∘ − ) ∘ 𝐺 ) ‘ 𝑎 ) = ( ( ( abs ∘ − ) ∘ 𝐺 ) ‘ 𝑎 ) ) | |
| 15 | eqid | ⊢ ( ( abs ∘ − ) ∘ 𝐺 ) = ( ( abs ∘ − ) ∘ 𝐺 ) | |
| 16 | 15 | ovolfsf | ⊢ ( 𝐺 : ℕ ⟶ ( ≤ ∩ ( ℝ × ℝ ) ) → ( ( abs ∘ − ) ∘ 𝐺 ) : ℕ ⟶ ( 0 [,) +∞ ) ) |
| 17 | 7 16 | syl | ⊢ ( 𝜑 → ( ( abs ∘ − ) ∘ 𝐺 ) : ℕ ⟶ ( 0 [,) +∞ ) ) |
| 18 | 17 | ffvelcdmda | ⊢ ( ( 𝜑 ∧ 𝑎 ∈ ℕ ) → ( ( ( abs ∘ − ) ∘ 𝐺 ) ‘ 𝑎 ) ∈ ( 0 [,) +∞ ) ) |
| 19 | elrege0 | ⊢ ( ( ( ( abs ∘ − ) ∘ 𝐺 ) ‘ 𝑎 ) ∈ ( 0 [,) +∞ ) ↔ ( ( ( ( abs ∘ − ) ∘ 𝐺 ) ‘ 𝑎 ) ∈ ℝ ∧ 0 ≤ ( ( ( abs ∘ − ) ∘ 𝐺 ) ‘ 𝑎 ) ) ) | |
| 20 | 18 19 | sylib | ⊢ ( ( 𝜑 ∧ 𝑎 ∈ ℕ ) → ( ( ( ( abs ∘ − ) ∘ 𝐺 ) ‘ 𝑎 ) ∈ ℝ ∧ 0 ≤ ( ( ( abs ∘ − ) ∘ 𝐺 ) ‘ 𝑎 ) ) ) |
| 21 | 20 | simpld | ⊢ ( ( 𝜑 ∧ 𝑎 ∈ ℕ ) → ( ( ( abs ∘ − ) ∘ 𝐺 ) ‘ 𝑎 ) ∈ ℝ ) |
| 22 | 20 | simprd | ⊢ ( ( 𝜑 ∧ 𝑎 ∈ ℕ ) → 0 ≤ ( ( ( abs ∘ − ) ∘ 𝐺 ) ‘ 𝑎 ) ) |
| 23 | 1 2 3 4 5 6 7 8 9 10 | uniioombllem1 | ⊢ ( 𝜑 → sup ( ran 𝑇 , ℝ* , < ) ∈ ℝ ) |
| 24 | 15 9 | ovolsf | ⊢ ( 𝐺 : ℕ ⟶ ( ≤ ∩ ( ℝ × ℝ ) ) → 𝑇 : ℕ ⟶ ( 0 [,) +∞ ) ) |
| 25 | 7 24 | syl | ⊢ ( 𝜑 → 𝑇 : ℕ ⟶ ( 0 [,) +∞ ) ) |
| 26 | 25 | frnd | ⊢ ( 𝜑 → ran 𝑇 ⊆ ( 0 [,) +∞ ) ) |
| 27 | icossxr | ⊢ ( 0 [,) +∞ ) ⊆ ℝ* | |
| 28 | 26 27 | sstrdi | ⊢ ( 𝜑 → ran 𝑇 ⊆ ℝ* ) |
| 29 | supxrub | ⊢ ( ( ran 𝑇 ⊆ ℝ* ∧ 𝑥 ∈ ran 𝑇 ) → 𝑥 ≤ sup ( ran 𝑇 , ℝ* , < ) ) | |
| 30 | 28 29 | sylan | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ran 𝑇 ) → 𝑥 ≤ sup ( ran 𝑇 , ℝ* , < ) ) |
| 31 | 30 | ralrimiva | ⊢ ( 𝜑 → ∀ 𝑥 ∈ ran 𝑇 𝑥 ≤ sup ( ran 𝑇 , ℝ* , < ) ) |
| 32 | 25 | ffnd | ⊢ ( 𝜑 → 𝑇 Fn ℕ ) |
| 33 | breq1 | ⊢ ( 𝑥 = ( 𝑇 ‘ 𝑚 ) → ( 𝑥 ≤ sup ( ran 𝑇 , ℝ* , < ) ↔ ( 𝑇 ‘ 𝑚 ) ≤ sup ( ran 𝑇 , ℝ* , < ) ) ) | |
| 34 | 33 | ralrn | ⊢ ( 𝑇 Fn ℕ → ( ∀ 𝑥 ∈ ran 𝑇 𝑥 ≤ sup ( ran 𝑇 , ℝ* , < ) ↔ ∀ 𝑚 ∈ ℕ ( 𝑇 ‘ 𝑚 ) ≤ sup ( ran 𝑇 , ℝ* , < ) ) ) |
| 35 | 32 34 | syl | ⊢ ( 𝜑 → ( ∀ 𝑥 ∈ ran 𝑇 𝑥 ≤ sup ( ran 𝑇 , ℝ* , < ) ↔ ∀ 𝑚 ∈ ℕ ( 𝑇 ‘ 𝑚 ) ≤ sup ( ran 𝑇 , ℝ* , < ) ) ) |
| 36 | 31 35 | mpbid | ⊢ ( 𝜑 → ∀ 𝑚 ∈ ℕ ( 𝑇 ‘ 𝑚 ) ≤ sup ( ran 𝑇 , ℝ* , < ) ) |
| 37 | brralrspcev | ⊢ ( ( sup ( ran 𝑇 , ℝ* , < ) ∈ ℝ ∧ ∀ 𝑚 ∈ ℕ ( 𝑇 ‘ 𝑚 ) ≤ sup ( ran 𝑇 , ℝ* , < ) ) → ∃ 𝑥 ∈ ℝ ∀ 𝑚 ∈ ℕ ( 𝑇 ‘ 𝑚 ) ≤ 𝑥 ) | |
| 38 | 23 36 37 | syl2anc | ⊢ ( 𝜑 → ∃ 𝑥 ∈ ℝ ∀ 𝑚 ∈ ℕ ( 𝑇 ‘ 𝑚 ) ≤ 𝑥 ) |
| 39 | 11 9 12 14 21 22 38 | isumsup2 | ⊢ ( 𝜑 → 𝑇 ⇝ sup ( ran 𝑇 , ℝ , < ) ) |
| 40 | rge0ssre | ⊢ ( 0 [,) +∞ ) ⊆ ℝ | |
| 41 | 26 40 | sstrdi | ⊢ ( 𝜑 → ran 𝑇 ⊆ ℝ ) |
| 42 | 1nn | ⊢ 1 ∈ ℕ | |
| 43 | 25 | fdmd | ⊢ ( 𝜑 → dom 𝑇 = ℕ ) |
| 44 | 42 43 | eleqtrrid | ⊢ ( 𝜑 → 1 ∈ dom 𝑇 ) |
| 45 | 44 | ne0d | ⊢ ( 𝜑 → dom 𝑇 ≠ ∅ ) |
| 46 | dm0rn0 | ⊢ ( dom 𝑇 = ∅ ↔ ran 𝑇 = ∅ ) | |
| 47 | 46 | necon3bii | ⊢ ( dom 𝑇 ≠ ∅ ↔ ran 𝑇 ≠ ∅ ) |
| 48 | 45 47 | sylib | ⊢ ( 𝜑 → ran 𝑇 ≠ ∅ ) |
| 49 | brralrspcev | ⊢ ( ( sup ( ran 𝑇 , ℝ* , < ) ∈ ℝ ∧ ∀ 𝑥 ∈ ran 𝑇 𝑥 ≤ sup ( ran 𝑇 , ℝ* , < ) ) → ∃ 𝑦 ∈ ℝ ∀ 𝑥 ∈ ran 𝑇 𝑥 ≤ 𝑦 ) | |
| 50 | 23 31 49 | syl2anc | ⊢ ( 𝜑 → ∃ 𝑦 ∈ ℝ ∀ 𝑥 ∈ ran 𝑇 𝑥 ≤ 𝑦 ) |
| 51 | supxrre | ⊢ ( ( ran 𝑇 ⊆ ℝ ∧ ran 𝑇 ≠ ∅ ∧ ∃ 𝑦 ∈ ℝ ∀ 𝑥 ∈ ran 𝑇 𝑥 ≤ 𝑦 ) → sup ( ran 𝑇 , ℝ* , < ) = sup ( ran 𝑇 , ℝ , < ) ) | |
| 52 | 41 48 50 51 | syl3anc | ⊢ ( 𝜑 → sup ( ran 𝑇 , ℝ* , < ) = sup ( ran 𝑇 , ℝ , < ) ) |
| 53 | 39 52 | breqtrrd | ⊢ ( 𝜑 → 𝑇 ⇝ sup ( ran 𝑇 , ℝ* , < ) ) |
| 54 | 11 12 6 13 53 | climi2 | ⊢ ( 𝜑 → ∃ 𝑗 ∈ ℕ ∀ 𝑚 ∈ ( ℤ≥ ‘ 𝑗 ) ( abs ‘ ( ( 𝑇 ‘ 𝑚 ) − sup ( ran 𝑇 , ℝ* , < ) ) ) < 𝐶 ) |
| 55 | 11 | r19.2uz | ⊢ ( ∃ 𝑗 ∈ ℕ ∀ 𝑚 ∈ ( ℤ≥ ‘ 𝑗 ) ( abs ‘ ( ( 𝑇 ‘ 𝑚 ) − sup ( ran 𝑇 , ℝ* , < ) ) ) < 𝐶 → ∃ 𝑚 ∈ ℕ ( abs ‘ ( ( 𝑇 ‘ 𝑚 ) − sup ( ran 𝑇 , ℝ* , < ) ) ) < 𝐶 ) |
| 56 | 54 55 | syl | ⊢ ( 𝜑 → ∃ 𝑚 ∈ ℕ ( abs ‘ ( ( 𝑇 ‘ 𝑚 ) − sup ( ran 𝑇 , ℝ* , < ) ) ) < 𝐶 ) |
| 57 | 1zzd | ⊢ ( ( ( 𝜑 ∧ ( 𝑚 ∈ ℕ ∧ ( abs ‘ ( ( 𝑇 ‘ 𝑚 ) − sup ( ran 𝑇 , ℝ* , < ) ) ) < 𝐶 ) ) ∧ 𝑗 ∈ ( 1 ... 𝑚 ) ) → 1 ∈ ℤ ) | |
| 58 | 6 | ad2antrr | ⊢ ( ( ( 𝜑 ∧ ( 𝑚 ∈ ℕ ∧ ( abs ‘ ( ( 𝑇 ‘ 𝑚 ) − sup ( ran 𝑇 , ℝ* , < ) ) ) < 𝐶 ) ) ∧ 𝑗 ∈ ( 1 ... 𝑚 ) ) → 𝐶 ∈ ℝ+ ) |
| 59 | simplrl | ⊢ ( ( ( 𝜑 ∧ ( 𝑚 ∈ ℕ ∧ ( abs ‘ ( ( 𝑇 ‘ 𝑚 ) − sup ( ran 𝑇 , ℝ* , < ) ) ) < 𝐶 ) ) ∧ 𝑗 ∈ ( 1 ... 𝑚 ) ) → 𝑚 ∈ ℕ ) | |
| 60 | 59 | nnrpd | ⊢ ( ( ( 𝜑 ∧ ( 𝑚 ∈ ℕ ∧ ( abs ‘ ( ( 𝑇 ‘ 𝑚 ) − sup ( ran 𝑇 , ℝ* , < ) ) ) < 𝐶 ) ) ∧ 𝑗 ∈ ( 1 ... 𝑚 ) ) → 𝑚 ∈ ℝ+ ) |
| 61 | 58 60 | rpdivcld | ⊢ ( ( ( 𝜑 ∧ ( 𝑚 ∈ ℕ ∧ ( abs ‘ ( ( 𝑇 ‘ 𝑚 ) − sup ( ran 𝑇 , ℝ* , < ) ) ) < 𝐶 ) ) ∧ 𝑗 ∈ ( 1 ... 𝑚 ) ) → ( 𝐶 / 𝑚 ) ∈ ℝ+ ) |
| 62 | fvex | ⊢ ( (,) ‘ ( 𝐹 ‘ 𝑧 ) ) ∈ V | |
| 63 | 62 | inex1 | ⊢ ( ( (,) ‘ ( 𝐹 ‘ 𝑧 ) ) ∩ ( (,) ‘ ( 𝐺 ‘ 𝑗 ) ) ) ∈ V |
| 64 | 63 | rgenw | ⊢ ∀ 𝑧 ∈ ℕ ( ( (,) ‘ ( 𝐹 ‘ 𝑧 ) ) ∩ ( (,) ‘ ( 𝐺 ‘ 𝑗 ) ) ) ∈ V |
| 65 | eqid | ⊢ ( 𝑧 ∈ ℕ ↦ ( ( (,) ‘ ( 𝐹 ‘ 𝑧 ) ) ∩ ( (,) ‘ ( 𝐺 ‘ 𝑗 ) ) ) ) = ( 𝑧 ∈ ℕ ↦ ( ( (,) ‘ ( 𝐹 ‘ 𝑧 ) ) ∩ ( (,) ‘ ( 𝐺 ‘ 𝑗 ) ) ) ) | |
| 66 | 65 | fnmpt | ⊢ ( ∀ 𝑧 ∈ ℕ ( ( (,) ‘ ( 𝐹 ‘ 𝑧 ) ) ∩ ( (,) ‘ ( 𝐺 ‘ 𝑗 ) ) ) ∈ V → ( 𝑧 ∈ ℕ ↦ ( ( (,) ‘ ( 𝐹 ‘ 𝑧 ) ) ∩ ( (,) ‘ ( 𝐺 ‘ 𝑗 ) ) ) ) Fn ℕ ) |
| 67 | 64 66 | mp1i | ⊢ ( ( ( ( 𝜑 ∧ ( 𝑚 ∈ ℕ ∧ ( abs ‘ ( ( 𝑇 ‘ 𝑚 ) − sup ( ran 𝑇 , ℝ* , < ) ) ) < 𝐶 ) ) ∧ 𝑗 ∈ ( 1 ... 𝑚 ) ) ∧ 𝑛 ∈ ℕ ) → ( 𝑧 ∈ ℕ ↦ ( ( (,) ‘ ( 𝐹 ‘ 𝑧 ) ) ∩ ( (,) ‘ ( 𝐺 ‘ 𝑗 ) ) ) ) Fn ℕ ) |
| 68 | elfznn | ⊢ ( 𝑖 ∈ ( 1 ... 𝑛 ) → 𝑖 ∈ ℕ ) | |
| 69 | fvco2 | ⊢ ( ( ( 𝑧 ∈ ℕ ↦ ( ( (,) ‘ ( 𝐹 ‘ 𝑧 ) ) ∩ ( (,) ‘ ( 𝐺 ‘ 𝑗 ) ) ) ) Fn ℕ ∧ 𝑖 ∈ ℕ ) → ( ( vol* ∘ ( 𝑧 ∈ ℕ ↦ ( ( (,) ‘ ( 𝐹 ‘ 𝑧 ) ) ∩ ( (,) ‘ ( 𝐺 ‘ 𝑗 ) ) ) ) ) ‘ 𝑖 ) = ( vol* ‘ ( ( 𝑧 ∈ ℕ ↦ ( ( (,) ‘ ( 𝐹 ‘ 𝑧 ) ) ∩ ( (,) ‘ ( 𝐺 ‘ 𝑗 ) ) ) ) ‘ 𝑖 ) ) ) | |
| 70 | 67 68 69 | syl2an | ⊢ ( ( ( ( ( 𝜑 ∧ ( 𝑚 ∈ ℕ ∧ ( abs ‘ ( ( 𝑇 ‘ 𝑚 ) − sup ( ran 𝑇 , ℝ* , < ) ) ) < 𝐶 ) ) ∧ 𝑗 ∈ ( 1 ... 𝑚 ) ) ∧ 𝑛 ∈ ℕ ) ∧ 𝑖 ∈ ( 1 ... 𝑛 ) ) → ( ( vol* ∘ ( 𝑧 ∈ ℕ ↦ ( ( (,) ‘ ( 𝐹 ‘ 𝑧 ) ) ∩ ( (,) ‘ ( 𝐺 ‘ 𝑗 ) ) ) ) ) ‘ 𝑖 ) = ( vol* ‘ ( ( 𝑧 ∈ ℕ ↦ ( ( (,) ‘ ( 𝐹 ‘ 𝑧 ) ) ∩ ( (,) ‘ ( 𝐺 ‘ 𝑗 ) ) ) ) ‘ 𝑖 ) ) ) |
| 71 | 68 | adantl | ⊢ ( ( ( ( ( 𝜑 ∧ ( 𝑚 ∈ ℕ ∧ ( abs ‘ ( ( 𝑇 ‘ 𝑚 ) − sup ( ran 𝑇 , ℝ* , < ) ) ) < 𝐶 ) ) ∧ 𝑗 ∈ ( 1 ... 𝑚 ) ) ∧ 𝑛 ∈ ℕ ) ∧ 𝑖 ∈ ( 1 ... 𝑛 ) ) → 𝑖 ∈ ℕ ) |
| 72 | 2fveq3 | ⊢ ( 𝑧 = 𝑖 → ( (,) ‘ ( 𝐹 ‘ 𝑧 ) ) = ( (,) ‘ ( 𝐹 ‘ 𝑖 ) ) ) | |
| 73 | 72 | ineq1d | ⊢ ( 𝑧 = 𝑖 → ( ( (,) ‘ ( 𝐹 ‘ 𝑧 ) ) ∩ ( (,) ‘ ( 𝐺 ‘ 𝑗 ) ) ) = ( ( (,) ‘ ( 𝐹 ‘ 𝑖 ) ) ∩ ( (,) ‘ ( 𝐺 ‘ 𝑗 ) ) ) ) |
| 74 | fvex | ⊢ ( (,) ‘ ( 𝐹 ‘ 𝑖 ) ) ∈ V | |
| 75 | 74 | inex1 | ⊢ ( ( (,) ‘ ( 𝐹 ‘ 𝑖 ) ) ∩ ( (,) ‘ ( 𝐺 ‘ 𝑗 ) ) ) ∈ V |
| 76 | 73 65 75 | fvmpt | ⊢ ( 𝑖 ∈ ℕ → ( ( 𝑧 ∈ ℕ ↦ ( ( (,) ‘ ( 𝐹 ‘ 𝑧 ) ) ∩ ( (,) ‘ ( 𝐺 ‘ 𝑗 ) ) ) ) ‘ 𝑖 ) = ( ( (,) ‘ ( 𝐹 ‘ 𝑖 ) ) ∩ ( (,) ‘ ( 𝐺 ‘ 𝑗 ) ) ) ) |
| 77 | 71 76 | syl | ⊢ ( ( ( ( ( 𝜑 ∧ ( 𝑚 ∈ ℕ ∧ ( abs ‘ ( ( 𝑇 ‘ 𝑚 ) − sup ( ran 𝑇 , ℝ* , < ) ) ) < 𝐶 ) ) ∧ 𝑗 ∈ ( 1 ... 𝑚 ) ) ∧ 𝑛 ∈ ℕ ) ∧ 𝑖 ∈ ( 1 ... 𝑛 ) ) → ( ( 𝑧 ∈ ℕ ↦ ( ( (,) ‘ ( 𝐹 ‘ 𝑧 ) ) ∩ ( (,) ‘ ( 𝐺 ‘ 𝑗 ) ) ) ) ‘ 𝑖 ) = ( ( (,) ‘ ( 𝐹 ‘ 𝑖 ) ) ∩ ( (,) ‘ ( 𝐺 ‘ 𝑗 ) ) ) ) |
| 78 | 77 | fveq2d | ⊢ ( ( ( ( ( 𝜑 ∧ ( 𝑚 ∈ ℕ ∧ ( abs ‘ ( ( 𝑇 ‘ 𝑚 ) − sup ( ran 𝑇 , ℝ* , < ) ) ) < 𝐶 ) ) ∧ 𝑗 ∈ ( 1 ... 𝑚 ) ) ∧ 𝑛 ∈ ℕ ) ∧ 𝑖 ∈ ( 1 ... 𝑛 ) ) → ( vol* ‘ ( ( 𝑧 ∈ ℕ ↦ ( ( (,) ‘ ( 𝐹 ‘ 𝑧 ) ) ∩ ( (,) ‘ ( 𝐺 ‘ 𝑗 ) ) ) ) ‘ 𝑖 ) ) = ( vol* ‘ ( ( (,) ‘ ( 𝐹 ‘ 𝑖 ) ) ∩ ( (,) ‘ ( 𝐺 ‘ 𝑗 ) ) ) ) ) |
| 79 | 70 78 | eqtrd | ⊢ ( ( ( ( ( 𝜑 ∧ ( 𝑚 ∈ ℕ ∧ ( abs ‘ ( ( 𝑇 ‘ 𝑚 ) − sup ( ran 𝑇 , ℝ* , < ) ) ) < 𝐶 ) ) ∧ 𝑗 ∈ ( 1 ... 𝑚 ) ) ∧ 𝑛 ∈ ℕ ) ∧ 𝑖 ∈ ( 1 ... 𝑛 ) ) → ( ( vol* ∘ ( 𝑧 ∈ ℕ ↦ ( ( (,) ‘ ( 𝐹 ‘ 𝑧 ) ) ∩ ( (,) ‘ ( 𝐺 ‘ 𝑗 ) ) ) ) ) ‘ 𝑖 ) = ( vol* ‘ ( ( (,) ‘ ( 𝐹 ‘ 𝑖 ) ) ∩ ( (,) ‘ ( 𝐺 ‘ 𝑗 ) ) ) ) ) |
| 80 | simpr | ⊢ ( ( ( ( 𝜑 ∧ ( 𝑚 ∈ ℕ ∧ ( abs ‘ ( ( 𝑇 ‘ 𝑚 ) − sup ( ran 𝑇 , ℝ* , < ) ) ) < 𝐶 ) ) ∧ 𝑗 ∈ ( 1 ... 𝑚 ) ) ∧ 𝑛 ∈ ℕ ) → 𝑛 ∈ ℕ ) | |
| 81 | 80 11 | eleqtrdi | ⊢ ( ( ( ( 𝜑 ∧ ( 𝑚 ∈ ℕ ∧ ( abs ‘ ( ( 𝑇 ‘ 𝑚 ) − sup ( ran 𝑇 , ℝ* , < ) ) ) < 𝐶 ) ) ∧ 𝑗 ∈ ( 1 ... 𝑚 ) ) ∧ 𝑛 ∈ ℕ ) → 𝑛 ∈ ( ℤ≥ ‘ 1 ) ) |
| 82 | inss2 | ⊢ ( ( (,) ‘ ( 𝐹 ‘ 𝑖 ) ) ∩ ( (,) ‘ ( 𝐺 ‘ 𝑗 ) ) ) ⊆ ( (,) ‘ ( 𝐺 ‘ 𝑗 ) ) | |
| 83 | 7 | adantr | ⊢ ( ( 𝜑 ∧ ( 𝑚 ∈ ℕ ∧ ( abs ‘ ( ( 𝑇 ‘ 𝑚 ) − sup ( ran 𝑇 , ℝ* , < ) ) ) < 𝐶 ) ) → 𝐺 : ℕ ⟶ ( ≤ ∩ ( ℝ × ℝ ) ) ) |
| 84 | elfznn | ⊢ ( 𝑗 ∈ ( 1 ... 𝑚 ) → 𝑗 ∈ ℕ ) | |
| 85 | ffvelcdm | ⊢ ( ( 𝐺 : ℕ ⟶ ( ≤ ∩ ( ℝ × ℝ ) ) ∧ 𝑗 ∈ ℕ ) → ( 𝐺 ‘ 𝑗 ) ∈ ( ≤ ∩ ( ℝ × ℝ ) ) ) | |
| 86 | 83 84 85 | syl2an | ⊢ ( ( ( 𝜑 ∧ ( 𝑚 ∈ ℕ ∧ ( abs ‘ ( ( 𝑇 ‘ 𝑚 ) − sup ( ran 𝑇 , ℝ* , < ) ) ) < 𝐶 ) ) ∧ 𝑗 ∈ ( 1 ... 𝑚 ) ) → ( 𝐺 ‘ 𝑗 ) ∈ ( ≤ ∩ ( ℝ × ℝ ) ) ) |
| 87 | 86 | elin2d | ⊢ ( ( ( 𝜑 ∧ ( 𝑚 ∈ ℕ ∧ ( abs ‘ ( ( 𝑇 ‘ 𝑚 ) − sup ( ran 𝑇 , ℝ* , < ) ) ) < 𝐶 ) ) ∧ 𝑗 ∈ ( 1 ... 𝑚 ) ) → ( 𝐺 ‘ 𝑗 ) ∈ ( ℝ × ℝ ) ) |
| 88 | 1st2nd2 | ⊢ ( ( 𝐺 ‘ 𝑗 ) ∈ ( ℝ × ℝ ) → ( 𝐺 ‘ 𝑗 ) = 〈 ( 1st ‘ ( 𝐺 ‘ 𝑗 ) ) , ( 2nd ‘ ( 𝐺 ‘ 𝑗 ) ) 〉 ) | |
| 89 | 87 88 | syl | ⊢ ( ( ( 𝜑 ∧ ( 𝑚 ∈ ℕ ∧ ( abs ‘ ( ( 𝑇 ‘ 𝑚 ) − sup ( ran 𝑇 , ℝ* , < ) ) ) < 𝐶 ) ) ∧ 𝑗 ∈ ( 1 ... 𝑚 ) ) → ( 𝐺 ‘ 𝑗 ) = 〈 ( 1st ‘ ( 𝐺 ‘ 𝑗 ) ) , ( 2nd ‘ ( 𝐺 ‘ 𝑗 ) ) 〉 ) |
| 90 | 89 | fveq2d | ⊢ ( ( ( 𝜑 ∧ ( 𝑚 ∈ ℕ ∧ ( abs ‘ ( ( 𝑇 ‘ 𝑚 ) − sup ( ran 𝑇 , ℝ* , < ) ) ) < 𝐶 ) ) ∧ 𝑗 ∈ ( 1 ... 𝑚 ) ) → ( (,) ‘ ( 𝐺 ‘ 𝑗 ) ) = ( (,) ‘ 〈 ( 1st ‘ ( 𝐺 ‘ 𝑗 ) ) , ( 2nd ‘ ( 𝐺 ‘ 𝑗 ) ) 〉 ) ) |
| 91 | df-ov | ⊢ ( ( 1st ‘ ( 𝐺 ‘ 𝑗 ) ) (,) ( 2nd ‘ ( 𝐺 ‘ 𝑗 ) ) ) = ( (,) ‘ 〈 ( 1st ‘ ( 𝐺 ‘ 𝑗 ) ) , ( 2nd ‘ ( 𝐺 ‘ 𝑗 ) ) 〉 ) | |
| 92 | 90 91 | eqtr4di | ⊢ ( ( ( 𝜑 ∧ ( 𝑚 ∈ ℕ ∧ ( abs ‘ ( ( 𝑇 ‘ 𝑚 ) − sup ( ran 𝑇 , ℝ* , < ) ) ) < 𝐶 ) ) ∧ 𝑗 ∈ ( 1 ... 𝑚 ) ) → ( (,) ‘ ( 𝐺 ‘ 𝑗 ) ) = ( ( 1st ‘ ( 𝐺 ‘ 𝑗 ) ) (,) ( 2nd ‘ ( 𝐺 ‘ 𝑗 ) ) ) ) |
| 93 | ioossre | ⊢ ( ( 1st ‘ ( 𝐺 ‘ 𝑗 ) ) (,) ( 2nd ‘ ( 𝐺 ‘ 𝑗 ) ) ) ⊆ ℝ | |
| 94 | 92 93 | eqsstrdi | ⊢ ( ( ( 𝜑 ∧ ( 𝑚 ∈ ℕ ∧ ( abs ‘ ( ( 𝑇 ‘ 𝑚 ) − sup ( ran 𝑇 , ℝ* , < ) ) ) < 𝐶 ) ) ∧ 𝑗 ∈ ( 1 ... 𝑚 ) ) → ( (,) ‘ ( 𝐺 ‘ 𝑗 ) ) ⊆ ℝ ) |
| 95 | 94 | ad2antrr | ⊢ ( ( ( ( ( 𝜑 ∧ ( 𝑚 ∈ ℕ ∧ ( abs ‘ ( ( 𝑇 ‘ 𝑚 ) − sup ( ran 𝑇 , ℝ* , < ) ) ) < 𝐶 ) ) ∧ 𝑗 ∈ ( 1 ... 𝑚 ) ) ∧ 𝑛 ∈ ℕ ) ∧ 𝑖 ∈ ( 1 ... 𝑛 ) ) → ( (,) ‘ ( 𝐺 ‘ 𝑗 ) ) ⊆ ℝ ) |
| 96 | 92 | fveq2d | ⊢ ( ( ( 𝜑 ∧ ( 𝑚 ∈ ℕ ∧ ( abs ‘ ( ( 𝑇 ‘ 𝑚 ) − sup ( ran 𝑇 , ℝ* , < ) ) ) < 𝐶 ) ) ∧ 𝑗 ∈ ( 1 ... 𝑚 ) ) → ( vol* ‘ ( (,) ‘ ( 𝐺 ‘ 𝑗 ) ) ) = ( vol* ‘ ( ( 1st ‘ ( 𝐺 ‘ 𝑗 ) ) (,) ( 2nd ‘ ( 𝐺 ‘ 𝑗 ) ) ) ) ) |
| 97 | ovolfcl | ⊢ ( ( 𝐺 : ℕ ⟶ ( ≤ ∩ ( ℝ × ℝ ) ) ∧ 𝑗 ∈ ℕ ) → ( ( 1st ‘ ( 𝐺 ‘ 𝑗 ) ) ∈ ℝ ∧ ( 2nd ‘ ( 𝐺 ‘ 𝑗 ) ) ∈ ℝ ∧ ( 1st ‘ ( 𝐺 ‘ 𝑗 ) ) ≤ ( 2nd ‘ ( 𝐺 ‘ 𝑗 ) ) ) ) | |
| 98 | 83 84 97 | syl2an | ⊢ ( ( ( 𝜑 ∧ ( 𝑚 ∈ ℕ ∧ ( abs ‘ ( ( 𝑇 ‘ 𝑚 ) − sup ( ran 𝑇 , ℝ* , < ) ) ) < 𝐶 ) ) ∧ 𝑗 ∈ ( 1 ... 𝑚 ) ) → ( ( 1st ‘ ( 𝐺 ‘ 𝑗 ) ) ∈ ℝ ∧ ( 2nd ‘ ( 𝐺 ‘ 𝑗 ) ) ∈ ℝ ∧ ( 1st ‘ ( 𝐺 ‘ 𝑗 ) ) ≤ ( 2nd ‘ ( 𝐺 ‘ 𝑗 ) ) ) ) |
| 99 | ovolioo | ⊢ ( ( ( 1st ‘ ( 𝐺 ‘ 𝑗 ) ) ∈ ℝ ∧ ( 2nd ‘ ( 𝐺 ‘ 𝑗 ) ) ∈ ℝ ∧ ( 1st ‘ ( 𝐺 ‘ 𝑗 ) ) ≤ ( 2nd ‘ ( 𝐺 ‘ 𝑗 ) ) ) → ( vol* ‘ ( ( 1st ‘ ( 𝐺 ‘ 𝑗 ) ) (,) ( 2nd ‘ ( 𝐺 ‘ 𝑗 ) ) ) ) = ( ( 2nd ‘ ( 𝐺 ‘ 𝑗 ) ) − ( 1st ‘ ( 𝐺 ‘ 𝑗 ) ) ) ) | |
| 100 | 98 99 | syl | ⊢ ( ( ( 𝜑 ∧ ( 𝑚 ∈ ℕ ∧ ( abs ‘ ( ( 𝑇 ‘ 𝑚 ) − sup ( ran 𝑇 , ℝ* , < ) ) ) < 𝐶 ) ) ∧ 𝑗 ∈ ( 1 ... 𝑚 ) ) → ( vol* ‘ ( ( 1st ‘ ( 𝐺 ‘ 𝑗 ) ) (,) ( 2nd ‘ ( 𝐺 ‘ 𝑗 ) ) ) ) = ( ( 2nd ‘ ( 𝐺 ‘ 𝑗 ) ) − ( 1st ‘ ( 𝐺 ‘ 𝑗 ) ) ) ) |
| 101 | 96 100 | eqtrd | ⊢ ( ( ( 𝜑 ∧ ( 𝑚 ∈ ℕ ∧ ( abs ‘ ( ( 𝑇 ‘ 𝑚 ) − sup ( ran 𝑇 , ℝ* , < ) ) ) < 𝐶 ) ) ∧ 𝑗 ∈ ( 1 ... 𝑚 ) ) → ( vol* ‘ ( (,) ‘ ( 𝐺 ‘ 𝑗 ) ) ) = ( ( 2nd ‘ ( 𝐺 ‘ 𝑗 ) ) − ( 1st ‘ ( 𝐺 ‘ 𝑗 ) ) ) ) |
| 102 | 98 | simp2d | ⊢ ( ( ( 𝜑 ∧ ( 𝑚 ∈ ℕ ∧ ( abs ‘ ( ( 𝑇 ‘ 𝑚 ) − sup ( ran 𝑇 , ℝ* , < ) ) ) < 𝐶 ) ) ∧ 𝑗 ∈ ( 1 ... 𝑚 ) ) → ( 2nd ‘ ( 𝐺 ‘ 𝑗 ) ) ∈ ℝ ) |
| 103 | 98 | simp1d | ⊢ ( ( ( 𝜑 ∧ ( 𝑚 ∈ ℕ ∧ ( abs ‘ ( ( 𝑇 ‘ 𝑚 ) − sup ( ran 𝑇 , ℝ* , < ) ) ) < 𝐶 ) ) ∧ 𝑗 ∈ ( 1 ... 𝑚 ) ) → ( 1st ‘ ( 𝐺 ‘ 𝑗 ) ) ∈ ℝ ) |
| 104 | 102 103 | resubcld | ⊢ ( ( ( 𝜑 ∧ ( 𝑚 ∈ ℕ ∧ ( abs ‘ ( ( 𝑇 ‘ 𝑚 ) − sup ( ran 𝑇 , ℝ* , < ) ) ) < 𝐶 ) ) ∧ 𝑗 ∈ ( 1 ... 𝑚 ) ) → ( ( 2nd ‘ ( 𝐺 ‘ 𝑗 ) ) − ( 1st ‘ ( 𝐺 ‘ 𝑗 ) ) ) ∈ ℝ ) |
| 105 | 101 104 | eqeltrd | ⊢ ( ( ( 𝜑 ∧ ( 𝑚 ∈ ℕ ∧ ( abs ‘ ( ( 𝑇 ‘ 𝑚 ) − sup ( ran 𝑇 , ℝ* , < ) ) ) < 𝐶 ) ) ∧ 𝑗 ∈ ( 1 ... 𝑚 ) ) → ( vol* ‘ ( (,) ‘ ( 𝐺 ‘ 𝑗 ) ) ) ∈ ℝ ) |
| 106 | 105 | ad2antrr | ⊢ ( ( ( ( ( 𝜑 ∧ ( 𝑚 ∈ ℕ ∧ ( abs ‘ ( ( 𝑇 ‘ 𝑚 ) − sup ( ran 𝑇 , ℝ* , < ) ) ) < 𝐶 ) ) ∧ 𝑗 ∈ ( 1 ... 𝑚 ) ) ∧ 𝑛 ∈ ℕ ) ∧ 𝑖 ∈ ( 1 ... 𝑛 ) ) → ( vol* ‘ ( (,) ‘ ( 𝐺 ‘ 𝑗 ) ) ) ∈ ℝ ) |
| 107 | ovolsscl | ⊢ ( ( ( ( (,) ‘ ( 𝐹 ‘ 𝑖 ) ) ∩ ( (,) ‘ ( 𝐺 ‘ 𝑗 ) ) ) ⊆ ( (,) ‘ ( 𝐺 ‘ 𝑗 ) ) ∧ ( (,) ‘ ( 𝐺 ‘ 𝑗 ) ) ⊆ ℝ ∧ ( vol* ‘ ( (,) ‘ ( 𝐺 ‘ 𝑗 ) ) ) ∈ ℝ ) → ( vol* ‘ ( ( (,) ‘ ( 𝐹 ‘ 𝑖 ) ) ∩ ( (,) ‘ ( 𝐺 ‘ 𝑗 ) ) ) ) ∈ ℝ ) | |
| 108 | 82 95 106 107 | mp3an2i | ⊢ ( ( ( ( ( 𝜑 ∧ ( 𝑚 ∈ ℕ ∧ ( abs ‘ ( ( 𝑇 ‘ 𝑚 ) − sup ( ran 𝑇 , ℝ* , < ) ) ) < 𝐶 ) ) ∧ 𝑗 ∈ ( 1 ... 𝑚 ) ) ∧ 𝑛 ∈ ℕ ) ∧ 𝑖 ∈ ( 1 ... 𝑛 ) ) → ( vol* ‘ ( ( (,) ‘ ( 𝐹 ‘ 𝑖 ) ) ∩ ( (,) ‘ ( 𝐺 ‘ 𝑗 ) ) ) ) ∈ ℝ ) |
| 109 | 108 | recnd | ⊢ ( ( ( ( ( 𝜑 ∧ ( 𝑚 ∈ ℕ ∧ ( abs ‘ ( ( 𝑇 ‘ 𝑚 ) − sup ( ran 𝑇 , ℝ* , < ) ) ) < 𝐶 ) ) ∧ 𝑗 ∈ ( 1 ... 𝑚 ) ) ∧ 𝑛 ∈ ℕ ) ∧ 𝑖 ∈ ( 1 ... 𝑛 ) ) → ( vol* ‘ ( ( (,) ‘ ( 𝐹 ‘ 𝑖 ) ) ∩ ( (,) ‘ ( 𝐺 ‘ 𝑗 ) ) ) ) ∈ ℂ ) |
| 110 | 79 81 109 | fsumser | ⊢ ( ( ( ( 𝜑 ∧ ( 𝑚 ∈ ℕ ∧ ( abs ‘ ( ( 𝑇 ‘ 𝑚 ) − sup ( ran 𝑇 , ℝ* , < ) ) ) < 𝐶 ) ) ∧ 𝑗 ∈ ( 1 ... 𝑚 ) ) ∧ 𝑛 ∈ ℕ ) → Σ 𝑖 ∈ ( 1 ... 𝑛 ) ( vol* ‘ ( ( (,) ‘ ( 𝐹 ‘ 𝑖 ) ) ∩ ( (,) ‘ ( 𝐺 ‘ 𝑗 ) ) ) ) = ( seq 1 ( + , ( vol* ∘ ( 𝑧 ∈ ℕ ↦ ( ( (,) ‘ ( 𝐹 ‘ 𝑧 ) ) ∩ ( (,) ‘ ( 𝐺 ‘ 𝑗 ) ) ) ) ) ) ‘ 𝑛 ) ) |
| 111 | 110 | eqcomd | ⊢ ( ( ( ( 𝜑 ∧ ( 𝑚 ∈ ℕ ∧ ( abs ‘ ( ( 𝑇 ‘ 𝑚 ) − sup ( ran 𝑇 , ℝ* , < ) ) ) < 𝐶 ) ) ∧ 𝑗 ∈ ( 1 ... 𝑚 ) ) ∧ 𝑛 ∈ ℕ ) → ( seq 1 ( + , ( vol* ∘ ( 𝑧 ∈ ℕ ↦ ( ( (,) ‘ ( 𝐹 ‘ 𝑧 ) ) ∩ ( (,) ‘ ( 𝐺 ‘ 𝑗 ) ) ) ) ) ) ‘ 𝑛 ) = Σ 𝑖 ∈ ( 1 ... 𝑛 ) ( vol* ‘ ( ( (,) ‘ ( 𝐹 ‘ 𝑖 ) ) ∩ ( (,) ‘ ( 𝐺 ‘ 𝑗 ) ) ) ) ) |
| 112 | 2fveq3 | ⊢ ( 𝑧 = 𝑘 → ( (,) ‘ ( 𝐹 ‘ 𝑧 ) ) = ( (,) ‘ ( 𝐹 ‘ 𝑘 ) ) ) | |
| 113 | 112 | ineq1d | ⊢ ( 𝑧 = 𝑘 → ( ( (,) ‘ ( 𝐹 ‘ 𝑧 ) ) ∩ ( (,) ‘ ( 𝐺 ‘ 𝑗 ) ) ) = ( ( (,) ‘ ( 𝐹 ‘ 𝑘 ) ) ∩ ( (,) ‘ ( 𝐺 ‘ 𝑗 ) ) ) ) |
| 114 | 113 | cbvmptv | ⊢ ( 𝑧 ∈ ℕ ↦ ( ( (,) ‘ ( 𝐹 ‘ 𝑧 ) ) ∩ ( (,) ‘ ( 𝐺 ‘ 𝑗 ) ) ) ) = ( 𝑘 ∈ ℕ ↦ ( ( (,) ‘ ( 𝐹 ‘ 𝑘 ) ) ∩ ( (,) ‘ ( 𝐺 ‘ 𝑗 ) ) ) ) |
| 115 | eqeq1 | ⊢ ( 𝑧 = 𝑥 → ( 𝑧 = ∅ ↔ 𝑥 = ∅ ) ) | |
| 116 | infeq1 | ⊢ ( 𝑧 = 𝑥 → inf ( 𝑧 , ℝ* , < ) = inf ( 𝑥 , ℝ* , < ) ) | |
| 117 | supeq1 | ⊢ ( 𝑧 = 𝑥 → sup ( 𝑧 , ℝ* , < ) = sup ( 𝑥 , ℝ* , < ) ) | |
| 118 | 116 117 | opeq12d | ⊢ ( 𝑧 = 𝑥 → 〈 inf ( 𝑧 , ℝ* , < ) , sup ( 𝑧 , ℝ* , < ) 〉 = 〈 inf ( 𝑥 , ℝ* , < ) , sup ( 𝑥 , ℝ* , < ) 〉 ) |
| 119 | 115 118 | ifbieq2d | ⊢ ( 𝑧 = 𝑥 → if ( 𝑧 = ∅ , 〈 0 , 0 〉 , 〈 inf ( 𝑧 , ℝ* , < ) , sup ( 𝑧 , ℝ* , < ) 〉 ) = if ( 𝑥 = ∅ , 〈 0 , 0 〉 , 〈 inf ( 𝑥 , ℝ* , < ) , sup ( 𝑥 , ℝ* , < ) 〉 ) ) |
| 120 | 119 | cbvmptv | ⊢ ( 𝑧 ∈ ran (,) ↦ if ( 𝑧 = ∅ , 〈 0 , 0 〉 , 〈 inf ( 𝑧 , ℝ* , < ) , sup ( 𝑧 , ℝ* , < ) 〉 ) ) = ( 𝑥 ∈ ran (,) ↦ if ( 𝑥 = ∅ , 〈 0 , 0 〉 , 〈 inf ( 𝑥 , ℝ* , < ) , sup ( 𝑥 , ℝ* , < ) 〉 ) ) |
| 121 | 1 2 3 4 5 6 7 8 9 10 114 120 | uniioombllem2 | ⊢ ( ( 𝜑 ∧ 𝑗 ∈ ℕ ) → seq 1 ( + , ( vol* ∘ ( 𝑧 ∈ ℕ ↦ ( ( (,) ‘ ( 𝐹 ‘ 𝑧 ) ) ∩ ( (,) ‘ ( 𝐺 ‘ 𝑗 ) ) ) ) ) ) ⇝ ( vol* ‘ ( ( (,) ‘ ( 𝐺 ‘ 𝑗 ) ) ∩ 𝐴 ) ) ) |
| 122 | 84 121 | sylan2 | ⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( 1 ... 𝑚 ) ) → seq 1 ( + , ( vol* ∘ ( 𝑧 ∈ ℕ ↦ ( ( (,) ‘ ( 𝐹 ‘ 𝑧 ) ) ∩ ( (,) ‘ ( 𝐺 ‘ 𝑗 ) ) ) ) ) ) ⇝ ( vol* ‘ ( ( (,) ‘ ( 𝐺 ‘ 𝑗 ) ) ∩ 𝐴 ) ) ) |
| 123 | 122 | adantlr | ⊢ ( ( ( 𝜑 ∧ ( 𝑚 ∈ ℕ ∧ ( abs ‘ ( ( 𝑇 ‘ 𝑚 ) − sup ( ran 𝑇 , ℝ* , < ) ) ) < 𝐶 ) ) ∧ 𝑗 ∈ ( 1 ... 𝑚 ) ) → seq 1 ( + , ( vol* ∘ ( 𝑧 ∈ ℕ ↦ ( ( (,) ‘ ( 𝐹 ‘ 𝑧 ) ) ∩ ( (,) ‘ ( 𝐺 ‘ 𝑗 ) ) ) ) ) ) ⇝ ( vol* ‘ ( ( (,) ‘ ( 𝐺 ‘ 𝑗 ) ) ∩ 𝐴 ) ) ) |
| 124 | 11 57 61 111 123 | climi2 | ⊢ ( ( ( 𝜑 ∧ ( 𝑚 ∈ ℕ ∧ ( abs ‘ ( ( 𝑇 ‘ 𝑚 ) − sup ( ran 𝑇 , ℝ* , < ) ) ) < 𝐶 ) ) ∧ 𝑗 ∈ ( 1 ... 𝑚 ) ) → ∃ 𝑎 ∈ ℕ ∀ 𝑛 ∈ ( ℤ≥ ‘ 𝑎 ) ( abs ‘ ( Σ 𝑖 ∈ ( 1 ... 𝑛 ) ( vol* ‘ ( ( (,) ‘ ( 𝐹 ‘ 𝑖 ) ) ∩ ( (,) ‘ ( 𝐺 ‘ 𝑗 ) ) ) ) − ( vol* ‘ ( ( (,) ‘ ( 𝐺 ‘ 𝑗 ) ) ∩ 𝐴 ) ) ) ) < ( 𝐶 / 𝑚 ) ) |
| 125 | 1z | ⊢ 1 ∈ ℤ | |
| 126 | 11 | rexuz3 | ⊢ ( 1 ∈ ℤ → ( ∃ 𝑎 ∈ ℕ ∀ 𝑛 ∈ ( ℤ≥ ‘ 𝑎 ) ( abs ‘ ( Σ 𝑖 ∈ ( 1 ... 𝑛 ) ( vol* ‘ ( ( (,) ‘ ( 𝐹 ‘ 𝑖 ) ) ∩ ( (,) ‘ ( 𝐺 ‘ 𝑗 ) ) ) ) − ( vol* ‘ ( ( (,) ‘ ( 𝐺 ‘ 𝑗 ) ) ∩ 𝐴 ) ) ) ) < ( 𝐶 / 𝑚 ) ↔ ∃ 𝑎 ∈ ℤ ∀ 𝑛 ∈ ( ℤ≥ ‘ 𝑎 ) ( abs ‘ ( Σ 𝑖 ∈ ( 1 ... 𝑛 ) ( vol* ‘ ( ( (,) ‘ ( 𝐹 ‘ 𝑖 ) ) ∩ ( (,) ‘ ( 𝐺 ‘ 𝑗 ) ) ) ) − ( vol* ‘ ( ( (,) ‘ ( 𝐺 ‘ 𝑗 ) ) ∩ 𝐴 ) ) ) ) < ( 𝐶 / 𝑚 ) ) ) |
| 127 | 125 126 | ax-mp | ⊢ ( ∃ 𝑎 ∈ ℕ ∀ 𝑛 ∈ ( ℤ≥ ‘ 𝑎 ) ( abs ‘ ( Σ 𝑖 ∈ ( 1 ... 𝑛 ) ( vol* ‘ ( ( (,) ‘ ( 𝐹 ‘ 𝑖 ) ) ∩ ( (,) ‘ ( 𝐺 ‘ 𝑗 ) ) ) ) − ( vol* ‘ ( ( (,) ‘ ( 𝐺 ‘ 𝑗 ) ) ∩ 𝐴 ) ) ) ) < ( 𝐶 / 𝑚 ) ↔ ∃ 𝑎 ∈ ℤ ∀ 𝑛 ∈ ( ℤ≥ ‘ 𝑎 ) ( abs ‘ ( Σ 𝑖 ∈ ( 1 ... 𝑛 ) ( vol* ‘ ( ( (,) ‘ ( 𝐹 ‘ 𝑖 ) ) ∩ ( (,) ‘ ( 𝐺 ‘ 𝑗 ) ) ) ) − ( vol* ‘ ( ( (,) ‘ ( 𝐺 ‘ 𝑗 ) ) ∩ 𝐴 ) ) ) ) < ( 𝐶 / 𝑚 ) ) |
| 128 | 124 127 | sylib | ⊢ ( ( ( 𝜑 ∧ ( 𝑚 ∈ ℕ ∧ ( abs ‘ ( ( 𝑇 ‘ 𝑚 ) − sup ( ran 𝑇 , ℝ* , < ) ) ) < 𝐶 ) ) ∧ 𝑗 ∈ ( 1 ... 𝑚 ) ) → ∃ 𝑎 ∈ ℤ ∀ 𝑛 ∈ ( ℤ≥ ‘ 𝑎 ) ( abs ‘ ( Σ 𝑖 ∈ ( 1 ... 𝑛 ) ( vol* ‘ ( ( (,) ‘ ( 𝐹 ‘ 𝑖 ) ) ∩ ( (,) ‘ ( 𝐺 ‘ 𝑗 ) ) ) ) − ( vol* ‘ ( ( (,) ‘ ( 𝐺 ‘ 𝑗 ) ) ∩ 𝐴 ) ) ) ) < ( 𝐶 / 𝑚 ) ) |
| 129 | 128 | ralrimiva | ⊢ ( ( 𝜑 ∧ ( 𝑚 ∈ ℕ ∧ ( abs ‘ ( ( 𝑇 ‘ 𝑚 ) − sup ( ran 𝑇 , ℝ* , < ) ) ) < 𝐶 ) ) → ∀ 𝑗 ∈ ( 1 ... 𝑚 ) ∃ 𝑎 ∈ ℤ ∀ 𝑛 ∈ ( ℤ≥ ‘ 𝑎 ) ( abs ‘ ( Σ 𝑖 ∈ ( 1 ... 𝑛 ) ( vol* ‘ ( ( (,) ‘ ( 𝐹 ‘ 𝑖 ) ) ∩ ( (,) ‘ ( 𝐺 ‘ 𝑗 ) ) ) ) − ( vol* ‘ ( ( (,) ‘ ( 𝐺 ‘ 𝑗 ) ) ∩ 𝐴 ) ) ) ) < ( 𝐶 / 𝑚 ) ) |
| 130 | fzfi | ⊢ ( 1 ... 𝑚 ) ∈ Fin | |
| 131 | rexfiuz | ⊢ ( ( 1 ... 𝑚 ) ∈ Fin → ( ∃ 𝑎 ∈ ℤ ∀ 𝑛 ∈ ( ℤ≥ ‘ 𝑎 ) ∀ 𝑗 ∈ ( 1 ... 𝑚 ) ( abs ‘ ( Σ 𝑖 ∈ ( 1 ... 𝑛 ) ( vol* ‘ ( ( (,) ‘ ( 𝐹 ‘ 𝑖 ) ) ∩ ( (,) ‘ ( 𝐺 ‘ 𝑗 ) ) ) ) − ( vol* ‘ ( ( (,) ‘ ( 𝐺 ‘ 𝑗 ) ) ∩ 𝐴 ) ) ) ) < ( 𝐶 / 𝑚 ) ↔ ∀ 𝑗 ∈ ( 1 ... 𝑚 ) ∃ 𝑎 ∈ ℤ ∀ 𝑛 ∈ ( ℤ≥ ‘ 𝑎 ) ( abs ‘ ( Σ 𝑖 ∈ ( 1 ... 𝑛 ) ( vol* ‘ ( ( (,) ‘ ( 𝐹 ‘ 𝑖 ) ) ∩ ( (,) ‘ ( 𝐺 ‘ 𝑗 ) ) ) ) − ( vol* ‘ ( ( (,) ‘ ( 𝐺 ‘ 𝑗 ) ) ∩ 𝐴 ) ) ) ) < ( 𝐶 / 𝑚 ) ) ) | |
| 132 | 130 131 | ax-mp | ⊢ ( ∃ 𝑎 ∈ ℤ ∀ 𝑛 ∈ ( ℤ≥ ‘ 𝑎 ) ∀ 𝑗 ∈ ( 1 ... 𝑚 ) ( abs ‘ ( Σ 𝑖 ∈ ( 1 ... 𝑛 ) ( vol* ‘ ( ( (,) ‘ ( 𝐹 ‘ 𝑖 ) ) ∩ ( (,) ‘ ( 𝐺 ‘ 𝑗 ) ) ) ) − ( vol* ‘ ( ( (,) ‘ ( 𝐺 ‘ 𝑗 ) ) ∩ 𝐴 ) ) ) ) < ( 𝐶 / 𝑚 ) ↔ ∀ 𝑗 ∈ ( 1 ... 𝑚 ) ∃ 𝑎 ∈ ℤ ∀ 𝑛 ∈ ( ℤ≥ ‘ 𝑎 ) ( abs ‘ ( Σ 𝑖 ∈ ( 1 ... 𝑛 ) ( vol* ‘ ( ( (,) ‘ ( 𝐹 ‘ 𝑖 ) ) ∩ ( (,) ‘ ( 𝐺 ‘ 𝑗 ) ) ) ) − ( vol* ‘ ( ( (,) ‘ ( 𝐺 ‘ 𝑗 ) ) ∩ 𝐴 ) ) ) ) < ( 𝐶 / 𝑚 ) ) |
| 133 | 129 132 | sylibr | ⊢ ( ( 𝜑 ∧ ( 𝑚 ∈ ℕ ∧ ( abs ‘ ( ( 𝑇 ‘ 𝑚 ) − sup ( ran 𝑇 , ℝ* , < ) ) ) < 𝐶 ) ) → ∃ 𝑎 ∈ ℤ ∀ 𝑛 ∈ ( ℤ≥ ‘ 𝑎 ) ∀ 𝑗 ∈ ( 1 ... 𝑚 ) ( abs ‘ ( Σ 𝑖 ∈ ( 1 ... 𝑛 ) ( vol* ‘ ( ( (,) ‘ ( 𝐹 ‘ 𝑖 ) ) ∩ ( (,) ‘ ( 𝐺 ‘ 𝑗 ) ) ) ) − ( vol* ‘ ( ( (,) ‘ ( 𝐺 ‘ 𝑗 ) ) ∩ 𝐴 ) ) ) ) < ( 𝐶 / 𝑚 ) ) |
| 134 | 11 | rexuz3 | ⊢ ( 1 ∈ ℤ → ( ∃ 𝑎 ∈ ℕ ∀ 𝑛 ∈ ( ℤ≥ ‘ 𝑎 ) ∀ 𝑗 ∈ ( 1 ... 𝑚 ) ( abs ‘ ( Σ 𝑖 ∈ ( 1 ... 𝑛 ) ( vol* ‘ ( ( (,) ‘ ( 𝐹 ‘ 𝑖 ) ) ∩ ( (,) ‘ ( 𝐺 ‘ 𝑗 ) ) ) ) − ( vol* ‘ ( ( (,) ‘ ( 𝐺 ‘ 𝑗 ) ) ∩ 𝐴 ) ) ) ) < ( 𝐶 / 𝑚 ) ↔ ∃ 𝑎 ∈ ℤ ∀ 𝑛 ∈ ( ℤ≥ ‘ 𝑎 ) ∀ 𝑗 ∈ ( 1 ... 𝑚 ) ( abs ‘ ( Σ 𝑖 ∈ ( 1 ... 𝑛 ) ( vol* ‘ ( ( (,) ‘ ( 𝐹 ‘ 𝑖 ) ) ∩ ( (,) ‘ ( 𝐺 ‘ 𝑗 ) ) ) ) − ( vol* ‘ ( ( (,) ‘ ( 𝐺 ‘ 𝑗 ) ) ∩ 𝐴 ) ) ) ) < ( 𝐶 / 𝑚 ) ) ) |
| 135 | 125 134 | ax-mp | ⊢ ( ∃ 𝑎 ∈ ℕ ∀ 𝑛 ∈ ( ℤ≥ ‘ 𝑎 ) ∀ 𝑗 ∈ ( 1 ... 𝑚 ) ( abs ‘ ( Σ 𝑖 ∈ ( 1 ... 𝑛 ) ( vol* ‘ ( ( (,) ‘ ( 𝐹 ‘ 𝑖 ) ) ∩ ( (,) ‘ ( 𝐺 ‘ 𝑗 ) ) ) ) − ( vol* ‘ ( ( (,) ‘ ( 𝐺 ‘ 𝑗 ) ) ∩ 𝐴 ) ) ) ) < ( 𝐶 / 𝑚 ) ↔ ∃ 𝑎 ∈ ℤ ∀ 𝑛 ∈ ( ℤ≥ ‘ 𝑎 ) ∀ 𝑗 ∈ ( 1 ... 𝑚 ) ( abs ‘ ( Σ 𝑖 ∈ ( 1 ... 𝑛 ) ( vol* ‘ ( ( (,) ‘ ( 𝐹 ‘ 𝑖 ) ) ∩ ( (,) ‘ ( 𝐺 ‘ 𝑗 ) ) ) ) − ( vol* ‘ ( ( (,) ‘ ( 𝐺 ‘ 𝑗 ) ) ∩ 𝐴 ) ) ) ) < ( 𝐶 / 𝑚 ) ) |
| 136 | 133 135 | sylibr | ⊢ ( ( 𝜑 ∧ ( 𝑚 ∈ ℕ ∧ ( abs ‘ ( ( 𝑇 ‘ 𝑚 ) − sup ( ran 𝑇 , ℝ* , < ) ) ) < 𝐶 ) ) → ∃ 𝑎 ∈ ℕ ∀ 𝑛 ∈ ( ℤ≥ ‘ 𝑎 ) ∀ 𝑗 ∈ ( 1 ... 𝑚 ) ( abs ‘ ( Σ 𝑖 ∈ ( 1 ... 𝑛 ) ( vol* ‘ ( ( (,) ‘ ( 𝐹 ‘ 𝑖 ) ) ∩ ( (,) ‘ ( 𝐺 ‘ 𝑗 ) ) ) ) − ( vol* ‘ ( ( (,) ‘ ( 𝐺 ‘ 𝑗 ) ) ∩ 𝐴 ) ) ) ) < ( 𝐶 / 𝑚 ) ) |
| 137 | 11 | r19.2uz | ⊢ ( ∃ 𝑎 ∈ ℕ ∀ 𝑛 ∈ ( ℤ≥ ‘ 𝑎 ) ∀ 𝑗 ∈ ( 1 ... 𝑚 ) ( abs ‘ ( Σ 𝑖 ∈ ( 1 ... 𝑛 ) ( vol* ‘ ( ( (,) ‘ ( 𝐹 ‘ 𝑖 ) ) ∩ ( (,) ‘ ( 𝐺 ‘ 𝑗 ) ) ) ) − ( vol* ‘ ( ( (,) ‘ ( 𝐺 ‘ 𝑗 ) ) ∩ 𝐴 ) ) ) ) < ( 𝐶 / 𝑚 ) → ∃ 𝑛 ∈ ℕ ∀ 𝑗 ∈ ( 1 ... 𝑚 ) ( abs ‘ ( Σ 𝑖 ∈ ( 1 ... 𝑛 ) ( vol* ‘ ( ( (,) ‘ ( 𝐹 ‘ 𝑖 ) ) ∩ ( (,) ‘ ( 𝐺 ‘ 𝑗 ) ) ) ) − ( vol* ‘ ( ( (,) ‘ ( 𝐺 ‘ 𝑗 ) ) ∩ 𝐴 ) ) ) ) < ( 𝐶 / 𝑚 ) ) |
| 138 | 136 137 | syl | ⊢ ( ( 𝜑 ∧ ( 𝑚 ∈ ℕ ∧ ( abs ‘ ( ( 𝑇 ‘ 𝑚 ) − sup ( ran 𝑇 , ℝ* , < ) ) ) < 𝐶 ) ) → ∃ 𝑛 ∈ ℕ ∀ 𝑗 ∈ ( 1 ... 𝑚 ) ( abs ‘ ( Σ 𝑖 ∈ ( 1 ... 𝑛 ) ( vol* ‘ ( ( (,) ‘ ( 𝐹 ‘ 𝑖 ) ) ∩ ( (,) ‘ ( 𝐺 ‘ 𝑗 ) ) ) ) − ( vol* ‘ ( ( (,) ‘ ( 𝐺 ‘ 𝑗 ) ) ∩ 𝐴 ) ) ) ) < ( 𝐶 / 𝑚 ) ) |
| 139 | 1 | adantr | ⊢ ( ( 𝜑 ∧ ( ( 𝑚 ∈ ℕ ∧ ( abs ‘ ( ( 𝑇 ‘ 𝑚 ) − sup ( ran 𝑇 , ℝ* , < ) ) ) < 𝐶 ) ∧ ( 𝑛 ∈ ℕ ∧ ∀ 𝑗 ∈ ( 1 ... 𝑚 ) ( abs ‘ ( Σ 𝑖 ∈ ( 1 ... 𝑛 ) ( vol* ‘ ( ( (,) ‘ ( 𝐹 ‘ 𝑖 ) ) ∩ ( (,) ‘ ( 𝐺 ‘ 𝑗 ) ) ) ) − ( vol* ‘ ( ( (,) ‘ ( 𝐺 ‘ 𝑗 ) ) ∩ 𝐴 ) ) ) ) < ( 𝐶 / 𝑚 ) ) ) ) → 𝐹 : ℕ ⟶ ( ≤ ∩ ( ℝ × ℝ ) ) ) |
| 140 | 2 | adantr | ⊢ ( ( 𝜑 ∧ ( ( 𝑚 ∈ ℕ ∧ ( abs ‘ ( ( 𝑇 ‘ 𝑚 ) − sup ( ran 𝑇 , ℝ* , < ) ) ) < 𝐶 ) ∧ ( 𝑛 ∈ ℕ ∧ ∀ 𝑗 ∈ ( 1 ... 𝑚 ) ( abs ‘ ( Σ 𝑖 ∈ ( 1 ... 𝑛 ) ( vol* ‘ ( ( (,) ‘ ( 𝐹 ‘ 𝑖 ) ) ∩ ( (,) ‘ ( 𝐺 ‘ 𝑗 ) ) ) ) − ( vol* ‘ ( ( (,) ‘ ( 𝐺 ‘ 𝑗 ) ) ∩ 𝐴 ) ) ) ) < ( 𝐶 / 𝑚 ) ) ) ) → Disj 𝑥 ∈ ℕ ( (,) ‘ ( 𝐹 ‘ 𝑥 ) ) ) |
| 141 | 5 | adantr | ⊢ ( ( 𝜑 ∧ ( ( 𝑚 ∈ ℕ ∧ ( abs ‘ ( ( 𝑇 ‘ 𝑚 ) − sup ( ran 𝑇 , ℝ* , < ) ) ) < 𝐶 ) ∧ ( 𝑛 ∈ ℕ ∧ ∀ 𝑗 ∈ ( 1 ... 𝑚 ) ( abs ‘ ( Σ 𝑖 ∈ ( 1 ... 𝑛 ) ( vol* ‘ ( ( (,) ‘ ( 𝐹 ‘ 𝑖 ) ) ∩ ( (,) ‘ ( 𝐺 ‘ 𝑗 ) ) ) ) − ( vol* ‘ ( ( (,) ‘ ( 𝐺 ‘ 𝑗 ) ) ∩ 𝐴 ) ) ) ) < ( 𝐶 / 𝑚 ) ) ) ) → ( vol* ‘ 𝐸 ) ∈ ℝ ) |
| 142 | 6 | adantr | ⊢ ( ( 𝜑 ∧ ( ( 𝑚 ∈ ℕ ∧ ( abs ‘ ( ( 𝑇 ‘ 𝑚 ) − sup ( ran 𝑇 , ℝ* , < ) ) ) < 𝐶 ) ∧ ( 𝑛 ∈ ℕ ∧ ∀ 𝑗 ∈ ( 1 ... 𝑚 ) ( abs ‘ ( Σ 𝑖 ∈ ( 1 ... 𝑛 ) ( vol* ‘ ( ( (,) ‘ ( 𝐹 ‘ 𝑖 ) ) ∩ ( (,) ‘ ( 𝐺 ‘ 𝑗 ) ) ) ) − ( vol* ‘ ( ( (,) ‘ ( 𝐺 ‘ 𝑗 ) ) ∩ 𝐴 ) ) ) ) < ( 𝐶 / 𝑚 ) ) ) ) → 𝐶 ∈ ℝ+ ) |
| 143 | 7 | adantr | ⊢ ( ( 𝜑 ∧ ( ( 𝑚 ∈ ℕ ∧ ( abs ‘ ( ( 𝑇 ‘ 𝑚 ) − sup ( ran 𝑇 , ℝ* , < ) ) ) < 𝐶 ) ∧ ( 𝑛 ∈ ℕ ∧ ∀ 𝑗 ∈ ( 1 ... 𝑚 ) ( abs ‘ ( Σ 𝑖 ∈ ( 1 ... 𝑛 ) ( vol* ‘ ( ( (,) ‘ ( 𝐹 ‘ 𝑖 ) ) ∩ ( (,) ‘ ( 𝐺 ‘ 𝑗 ) ) ) ) − ( vol* ‘ ( ( (,) ‘ ( 𝐺 ‘ 𝑗 ) ) ∩ 𝐴 ) ) ) ) < ( 𝐶 / 𝑚 ) ) ) ) → 𝐺 : ℕ ⟶ ( ≤ ∩ ( ℝ × ℝ ) ) ) |
| 144 | 8 | adantr | ⊢ ( ( 𝜑 ∧ ( ( 𝑚 ∈ ℕ ∧ ( abs ‘ ( ( 𝑇 ‘ 𝑚 ) − sup ( ran 𝑇 , ℝ* , < ) ) ) < 𝐶 ) ∧ ( 𝑛 ∈ ℕ ∧ ∀ 𝑗 ∈ ( 1 ... 𝑚 ) ( abs ‘ ( Σ 𝑖 ∈ ( 1 ... 𝑛 ) ( vol* ‘ ( ( (,) ‘ ( 𝐹 ‘ 𝑖 ) ) ∩ ( (,) ‘ ( 𝐺 ‘ 𝑗 ) ) ) ) − ( vol* ‘ ( ( (,) ‘ ( 𝐺 ‘ 𝑗 ) ) ∩ 𝐴 ) ) ) ) < ( 𝐶 / 𝑚 ) ) ) ) → 𝐸 ⊆ ∪ ran ( (,) ∘ 𝐺 ) ) |
| 145 | 10 | adantr | ⊢ ( ( 𝜑 ∧ ( ( 𝑚 ∈ ℕ ∧ ( abs ‘ ( ( 𝑇 ‘ 𝑚 ) − sup ( ran 𝑇 , ℝ* , < ) ) ) < 𝐶 ) ∧ ( 𝑛 ∈ ℕ ∧ ∀ 𝑗 ∈ ( 1 ... 𝑚 ) ( abs ‘ ( Σ 𝑖 ∈ ( 1 ... 𝑛 ) ( vol* ‘ ( ( (,) ‘ ( 𝐹 ‘ 𝑖 ) ) ∩ ( (,) ‘ ( 𝐺 ‘ 𝑗 ) ) ) ) − ( vol* ‘ ( ( (,) ‘ ( 𝐺 ‘ 𝑗 ) ) ∩ 𝐴 ) ) ) ) < ( 𝐶 / 𝑚 ) ) ) ) → sup ( ran 𝑇 , ℝ* , < ) ≤ ( ( vol* ‘ 𝐸 ) + 𝐶 ) ) |
| 146 | simprll | ⊢ ( ( 𝜑 ∧ ( ( 𝑚 ∈ ℕ ∧ ( abs ‘ ( ( 𝑇 ‘ 𝑚 ) − sup ( ran 𝑇 , ℝ* , < ) ) ) < 𝐶 ) ∧ ( 𝑛 ∈ ℕ ∧ ∀ 𝑗 ∈ ( 1 ... 𝑚 ) ( abs ‘ ( Σ 𝑖 ∈ ( 1 ... 𝑛 ) ( vol* ‘ ( ( (,) ‘ ( 𝐹 ‘ 𝑖 ) ) ∩ ( (,) ‘ ( 𝐺 ‘ 𝑗 ) ) ) ) − ( vol* ‘ ( ( (,) ‘ ( 𝐺 ‘ 𝑗 ) ) ∩ 𝐴 ) ) ) ) < ( 𝐶 / 𝑚 ) ) ) ) → 𝑚 ∈ ℕ ) | |
| 147 | simprlr | ⊢ ( ( 𝜑 ∧ ( ( 𝑚 ∈ ℕ ∧ ( abs ‘ ( ( 𝑇 ‘ 𝑚 ) − sup ( ran 𝑇 , ℝ* , < ) ) ) < 𝐶 ) ∧ ( 𝑛 ∈ ℕ ∧ ∀ 𝑗 ∈ ( 1 ... 𝑚 ) ( abs ‘ ( Σ 𝑖 ∈ ( 1 ... 𝑛 ) ( vol* ‘ ( ( (,) ‘ ( 𝐹 ‘ 𝑖 ) ) ∩ ( (,) ‘ ( 𝐺 ‘ 𝑗 ) ) ) ) − ( vol* ‘ ( ( (,) ‘ ( 𝐺 ‘ 𝑗 ) ) ∩ 𝐴 ) ) ) ) < ( 𝐶 / 𝑚 ) ) ) ) → ( abs ‘ ( ( 𝑇 ‘ 𝑚 ) − sup ( ran 𝑇 , ℝ* , < ) ) ) < 𝐶 ) | |
| 148 | eqid | ⊢ ∪ ( ( (,) ∘ 𝐺 ) “ ( 1 ... 𝑚 ) ) = ∪ ( ( (,) ∘ 𝐺 ) “ ( 1 ... 𝑚 ) ) | |
| 149 | simprrl | ⊢ ( ( 𝜑 ∧ ( ( 𝑚 ∈ ℕ ∧ ( abs ‘ ( ( 𝑇 ‘ 𝑚 ) − sup ( ran 𝑇 , ℝ* , < ) ) ) < 𝐶 ) ∧ ( 𝑛 ∈ ℕ ∧ ∀ 𝑗 ∈ ( 1 ... 𝑚 ) ( abs ‘ ( Σ 𝑖 ∈ ( 1 ... 𝑛 ) ( vol* ‘ ( ( (,) ‘ ( 𝐹 ‘ 𝑖 ) ) ∩ ( (,) ‘ ( 𝐺 ‘ 𝑗 ) ) ) ) − ( vol* ‘ ( ( (,) ‘ ( 𝐺 ‘ 𝑗 ) ) ∩ 𝐴 ) ) ) ) < ( 𝐶 / 𝑚 ) ) ) ) → 𝑛 ∈ ℕ ) | |
| 150 | simprrr | ⊢ ( ( 𝜑 ∧ ( ( 𝑚 ∈ ℕ ∧ ( abs ‘ ( ( 𝑇 ‘ 𝑚 ) − sup ( ran 𝑇 , ℝ* , < ) ) ) < 𝐶 ) ∧ ( 𝑛 ∈ ℕ ∧ ∀ 𝑗 ∈ ( 1 ... 𝑚 ) ( abs ‘ ( Σ 𝑖 ∈ ( 1 ... 𝑛 ) ( vol* ‘ ( ( (,) ‘ ( 𝐹 ‘ 𝑖 ) ) ∩ ( (,) ‘ ( 𝐺 ‘ 𝑗 ) ) ) ) − ( vol* ‘ ( ( (,) ‘ ( 𝐺 ‘ 𝑗 ) ) ∩ 𝐴 ) ) ) ) < ( 𝐶 / 𝑚 ) ) ) ) → ∀ 𝑗 ∈ ( 1 ... 𝑚 ) ( abs ‘ ( Σ 𝑖 ∈ ( 1 ... 𝑛 ) ( vol* ‘ ( ( (,) ‘ ( 𝐹 ‘ 𝑖 ) ) ∩ ( (,) ‘ ( 𝐺 ‘ 𝑗 ) ) ) ) − ( vol* ‘ ( ( (,) ‘ ( 𝐺 ‘ 𝑗 ) ) ∩ 𝐴 ) ) ) ) < ( 𝐶 / 𝑚 ) ) | |
| 151 | 2fveq3 | ⊢ ( 𝑖 = 𝑧 → ( (,) ‘ ( 𝐹 ‘ 𝑖 ) ) = ( (,) ‘ ( 𝐹 ‘ 𝑧 ) ) ) | |
| 152 | 151 | ineq1d | ⊢ ( 𝑖 = 𝑧 → ( ( (,) ‘ ( 𝐹 ‘ 𝑖 ) ) ∩ ( (,) ‘ ( 𝐺 ‘ 𝑗 ) ) ) = ( ( (,) ‘ ( 𝐹 ‘ 𝑧 ) ) ∩ ( (,) ‘ ( 𝐺 ‘ 𝑗 ) ) ) ) |
| 153 | 152 | fveq2d | ⊢ ( 𝑖 = 𝑧 → ( vol* ‘ ( ( (,) ‘ ( 𝐹 ‘ 𝑖 ) ) ∩ ( (,) ‘ ( 𝐺 ‘ 𝑗 ) ) ) ) = ( vol* ‘ ( ( (,) ‘ ( 𝐹 ‘ 𝑧 ) ) ∩ ( (,) ‘ ( 𝐺 ‘ 𝑗 ) ) ) ) ) |
| 154 | 153 | cbvsumv | ⊢ Σ 𝑖 ∈ ( 1 ... 𝑛 ) ( vol* ‘ ( ( (,) ‘ ( 𝐹 ‘ 𝑖 ) ) ∩ ( (,) ‘ ( 𝐺 ‘ 𝑗 ) ) ) ) = Σ 𝑧 ∈ ( 1 ... 𝑛 ) ( vol* ‘ ( ( (,) ‘ ( 𝐹 ‘ 𝑧 ) ) ∩ ( (,) ‘ ( 𝐺 ‘ 𝑗 ) ) ) ) |
| 155 | 2fveq3 | ⊢ ( 𝑗 = 𝑘 → ( (,) ‘ ( 𝐺 ‘ 𝑗 ) ) = ( (,) ‘ ( 𝐺 ‘ 𝑘 ) ) ) | |
| 156 | 155 | ineq2d | ⊢ ( 𝑗 = 𝑘 → ( ( (,) ‘ ( 𝐹 ‘ 𝑧 ) ) ∩ ( (,) ‘ ( 𝐺 ‘ 𝑗 ) ) ) = ( ( (,) ‘ ( 𝐹 ‘ 𝑧 ) ) ∩ ( (,) ‘ ( 𝐺 ‘ 𝑘 ) ) ) ) |
| 157 | 156 | fveq2d | ⊢ ( 𝑗 = 𝑘 → ( vol* ‘ ( ( (,) ‘ ( 𝐹 ‘ 𝑧 ) ) ∩ ( (,) ‘ ( 𝐺 ‘ 𝑗 ) ) ) ) = ( vol* ‘ ( ( (,) ‘ ( 𝐹 ‘ 𝑧 ) ) ∩ ( (,) ‘ ( 𝐺 ‘ 𝑘 ) ) ) ) ) |
| 158 | 157 | sumeq2sdv | ⊢ ( 𝑗 = 𝑘 → Σ 𝑧 ∈ ( 1 ... 𝑛 ) ( vol* ‘ ( ( (,) ‘ ( 𝐹 ‘ 𝑧 ) ) ∩ ( (,) ‘ ( 𝐺 ‘ 𝑗 ) ) ) ) = Σ 𝑧 ∈ ( 1 ... 𝑛 ) ( vol* ‘ ( ( (,) ‘ ( 𝐹 ‘ 𝑧 ) ) ∩ ( (,) ‘ ( 𝐺 ‘ 𝑘 ) ) ) ) ) |
| 159 | 154 158 | eqtrid | ⊢ ( 𝑗 = 𝑘 → Σ 𝑖 ∈ ( 1 ... 𝑛 ) ( vol* ‘ ( ( (,) ‘ ( 𝐹 ‘ 𝑖 ) ) ∩ ( (,) ‘ ( 𝐺 ‘ 𝑗 ) ) ) ) = Σ 𝑧 ∈ ( 1 ... 𝑛 ) ( vol* ‘ ( ( (,) ‘ ( 𝐹 ‘ 𝑧 ) ) ∩ ( (,) ‘ ( 𝐺 ‘ 𝑘 ) ) ) ) ) |
| 160 | 155 | ineq1d | ⊢ ( 𝑗 = 𝑘 → ( ( (,) ‘ ( 𝐺 ‘ 𝑗 ) ) ∩ 𝐴 ) = ( ( (,) ‘ ( 𝐺 ‘ 𝑘 ) ) ∩ 𝐴 ) ) |
| 161 | 160 | fveq2d | ⊢ ( 𝑗 = 𝑘 → ( vol* ‘ ( ( (,) ‘ ( 𝐺 ‘ 𝑗 ) ) ∩ 𝐴 ) ) = ( vol* ‘ ( ( (,) ‘ ( 𝐺 ‘ 𝑘 ) ) ∩ 𝐴 ) ) ) |
| 162 | 159 161 | oveq12d | ⊢ ( 𝑗 = 𝑘 → ( Σ 𝑖 ∈ ( 1 ... 𝑛 ) ( vol* ‘ ( ( (,) ‘ ( 𝐹 ‘ 𝑖 ) ) ∩ ( (,) ‘ ( 𝐺 ‘ 𝑗 ) ) ) ) − ( vol* ‘ ( ( (,) ‘ ( 𝐺 ‘ 𝑗 ) ) ∩ 𝐴 ) ) ) = ( Σ 𝑧 ∈ ( 1 ... 𝑛 ) ( vol* ‘ ( ( (,) ‘ ( 𝐹 ‘ 𝑧 ) ) ∩ ( (,) ‘ ( 𝐺 ‘ 𝑘 ) ) ) ) − ( vol* ‘ ( ( (,) ‘ ( 𝐺 ‘ 𝑘 ) ) ∩ 𝐴 ) ) ) ) |
| 163 | 162 | fveq2d | ⊢ ( 𝑗 = 𝑘 → ( abs ‘ ( Σ 𝑖 ∈ ( 1 ... 𝑛 ) ( vol* ‘ ( ( (,) ‘ ( 𝐹 ‘ 𝑖 ) ) ∩ ( (,) ‘ ( 𝐺 ‘ 𝑗 ) ) ) ) − ( vol* ‘ ( ( (,) ‘ ( 𝐺 ‘ 𝑗 ) ) ∩ 𝐴 ) ) ) ) = ( abs ‘ ( Σ 𝑧 ∈ ( 1 ... 𝑛 ) ( vol* ‘ ( ( (,) ‘ ( 𝐹 ‘ 𝑧 ) ) ∩ ( (,) ‘ ( 𝐺 ‘ 𝑘 ) ) ) ) − ( vol* ‘ ( ( (,) ‘ ( 𝐺 ‘ 𝑘 ) ) ∩ 𝐴 ) ) ) ) ) |
| 164 | 163 | breq1d | ⊢ ( 𝑗 = 𝑘 → ( ( abs ‘ ( Σ 𝑖 ∈ ( 1 ... 𝑛 ) ( vol* ‘ ( ( (,) ‘ ( 𝐹 ‘ 𝑖 ) ) ∩ ( (,) ‘ ( 𝐺 ‘ 𝑗 ) ) ) ) − ( vol* ‘ ( ( (,) ‘ ( 𝐺 ‘ 𝑗 ) ) ∩ 𝐴 ) ) ) ) < ( 𝐶 / 𝑚 ) ↔ ( abs ‘ ( Σ 𝑧 ∈ ( 1 ... 𝑛 ) ( vol* ‘ ( ( (,) ‘ ( 𝐹 ‘ 𝑧 ) ) ∩ ( (,) ‘ ( 𝐺 ‘ 𝑘 ) ) ) ) − ( vol* ‘ ( ( (,) ‘ ( 𝐺 ‘ 𝑘 ) ) ∩ 𝐴 ) ) ) ) < ( 𝐶 / 𝑚 ) ) ) |
| 165 | 164 | cbvralvw | ⊢ ( ∀ 𝑗 ∈ ( 1 ... 𝑚 ) ( abs ‘ ( Σ 𝑖 ∈ ( 1 ... 𝑛 ) ( vol* ‘ ( ( (,) ‘ ( 𝐹 ‘ 𝑖 ) ) ∩ ( (,) ‘ ( 𝐺 ‘ 𝑗 ) ) ) ) − ( vol* ‘ ( ( (,) ‘ ( 𝐺 ‘ 𝑗 ) ) ∩ 𝐴 ) ) ) ) < ( 𝐶 / 𝑚 ) ↔ ∀ 𝑘 ∈ ( 1 ... 𝑚 ) ( abs ‘ ( Σ 𝑧 ∈ ( 1 ... 𝑛 ) ( vol* ‘ ( ( (,) ‘ ( 𝐹 ‘ 𝑧 ) ) ∩ ( (,) ‘ ( 𝐺 ‘ 𝑘 ) ) ) ) − ( vol* ‘ ( ( (,) ‘ ( 𝐺 ‘ 𝑘 ) ) ∩ 𝐴 ) ) ) ) < ( 𝐶 / 𝑚 ) ) |
| 166 | 150 165 | sylib | ⊢ ( ( 𝜑 ∧ ( ( 𝑚 ∈ ℕ ∧ ( abs ‘ ( ( 𝑇 ‘ 𝑚 ) − sup ( ran 𝑇 , ℝ* , < ) ) ) < 𝐶 ) ∧ ( 𝑛 ∈ ℕ ∧ ∀ 𝑗 ∈ ( 1 ... 𝑚 ) ( abs ‘ ( Σ 𝑖 ∈ ( 1 ... 𝑛 ) ( vol* ‘ ( ( (,) ‘ ( 𝐹 ‘ 𝑖 ) ) ∩ ( (,) ‘ ( 𝐺 ‘ 𝑗 ) ) ) ) − ( vol* ‘ ( ( (,) ‘ ( 𝐺 ‘ 𝑗 ) ) ∩ 𝐴 ) ) ) ) < ( 𝐶 / 𝑚 ) ) ) ) → ∀ 𝑘 ∈ ( 1 ... 𝑚 ) ( abs ‘ ( Σ 𝑧 ∈ ( 1 ... 𝑛 ) ( vol* ‘ ( ( (,) ‘ ( 𝐹 ‘ 𝑧 ) ) ∩ ( (,) ‘ ( 𝐺 ‘ 𝑘 ) ) ) ) − ( vol* ‘ ( ( (,) ‘ ( 𝐺 ‘ 𝑘 ) ) ∩ 𝐴 ) ) ) ) < ( 𝐶 / 𝑚 ) ) |
| 167 | eqid | ⊢ ∪ ( ( (,) ∘ 𝐹 ) “ ( 1 ... 𝑛 ) ) = ∪ ( ( (,) ∘ 𝐹 ) “ ( 1 ... 𝑛 ) ) | |
| 168 | 139 140 3 4 141 142 143 144 9 145 146 147 148 149 166 167 | uniioombllem5 | ⊢ ( ( 𝜑 ∧ ( ( 𝑚 ∈ ℕ ∧ ( abs ‘ ( ( 𝑇 ‘ 𝑚 ) − sup ( ran 𝑇 , ℝ* , < ) ) ) < 𝐶 ) ∧ ( 𝑛 ∈ ℕ ∧ ∀ 𝑗 ∈ ( 1 ... 𝑚 ) ( abs ‘ ( Σ 𝑖 ∈ ( 1 ... 𝑛 ) ( vol* ‘ ( ( (,) ‘ ( 𝐹 ‘ 𝑖 ) ) ∩ ( (,) ‘ ( 𝐺 ‘ 𝑗 ) ) ) ) − ( vol* ‘ ( ( (,) ‘ ( 𝐺 ‘ 𝑗 ) ) ∩ 𝐴 ) ) ) ) < ( 𝐶 / 𝑚 ) ) ) ) → ( ( vol* ‘ ( 𝐸 ∩ 𝐴 ) ) + ( vol* ‘ ( 𝐸 ∖ 𝐴 ) ) ) ≤ ( ( vol* ‘ 𝐸 ) + ( 4 · 𝐶 ) ) ) |
| 169 | 168 | anassrs | ⊢ ( ( ( 𝜑 ∧ ( 𝑚 ∈ ℕ ∧ ( abs ‘ ( ( 𝑇 ‘ 𝑚 ) − sup ( ran 𝑇 , ℝ* , < ) ) ) < 𝐶 ) ) ∧ ( 𝑛 ∈ ℕ ∧ ∀ 𝑗 ∈ ( 1 ... 𝑚 ) ( abs ‘ ( Σ 𝑖 ∈ ( 1 ... 𝑛 ) ( vol* ‘ ( ( (,) ‘ ( 𝐹 ‘ 𝑖 ) ) ∩ ( (,) ‘ ( 𝐺 ‘ 𝑗 ) ) ) ) − ( vol* ‘ ( ( (,) ‘ ( 𝐺 ‘ 𝑗 ) ) ∩ 𝐴 ) ) ) ) < ( 𝐶 / 𝑚 ) ) ) → ( ( vol* ‘ ( 𝐸 ∩ 𝐴 ) ) + ( vol* ‘ ( 𝐸 ∖ 𝐴 ) ) ) ≤ ( ( vol* ‘ 𝐸 ) + ( 4 · 𝐶 ) ) ) |
| 170 | 138 169 | rexlimddv | ⊢ ( ( 𝜑 ∧ ( 𝑚 ∈ ℕ ∧ ( abs ‘ ( ( 𝑇 ‘ 𝑚 ) − sup ( ran 𝑇 , ℝ* , < ) ) ) < 𝐶 ) ) → ( ( vol* ‘ ( 𝐸 ∩ 𝐴 ) ) + ( vol* ‘ ( 𝐸 ∖ 𝐴 ) ) ) ≤ ( ( vol* ‘ 𝐸 ) + ( 4 · 𝐶 ) ) ) |
| 171 | 56 170 | rexlimddv | ⊢ ( 𝜑 → ( ( vol* ‘ ( 𝐸 ∩ 𝐴 ) ) + ( vol* ‘ ( 𝐸 ∖ 𝐴 ) ) ) ≤ ( ( vol* ‘ 𝐸 ) + ( 4 · 𝐶 ) ) ) |