This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for seqf1o . (Contributed by Mario Carneiro, 26-Feb-2014) (Revised by Mario Carneiro, 27-May-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | seqf1o.1 | |- ( ( ph /\ ( x e. S /\ y e. S ) ) -> ( x .+ y ) e. S ) |
|
| seqf1o.2 | |- ( ( ph /\ ( x e. C /\ y e. C ) ) -> ( x .+ y ) = ( y .+ x ) ) |
||
| seqf1o.3 | |- ( ( ph /\ ( x e. S /\ y e. S /\ z e. S ) ) -> ( ( x .+ y ) .+ z ) = ( x .+ ( y .+ z ) ) ) |
||
| seqf1o.4 | |- ( ph -> N e. ( ZZ>= ` M ) ) |
||
| seqf1o.5 | |- ( ph -> C C_ S ) |
||
| seqf1olem.5 | |- ( ph -> F : ( M ... ( N + 1 ) ) -1-1-onto-> ( M ... ( N + 1 ) ) ) |
||
| seqf1olem.6 | |- ( ph -> G : ( M ... ( N + 1 ) ) --> C ) |
||
| seqf1olem.7 | |- J = ( k e. ( M ... N ) |-> ( F ` if ( k < K , k , ( k + 1 ) ) ) ) |
||
| seqf1olem.8 | |- K = ( `' F ` ( N + 1 ) ) |
||
| Assertion | seqf1olem1 | |- ( ph -> J : ( M ... N ) -1-1-onto-> ( M ... N ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | seqf1o.1 | |- ( ( ph /\ ( x e. S /\ y e. S ) ) -> ( x .+ y ) e. S ) |
|
| 2 | seqf1o.2 | |- ( ( ph /\ ( x e. C /\ y e. C ) ) -> ( x .+ y ) = ( y .+ x ) ) |
|
| 3 | seqf1o.3 | |- ( ( ph /\ ( x e. S /\ y e. S /\ z e. S ) ) -> ( ( x .+ y ) .+ z ) = ( x .+ ( y .+ z ) ) ) |
|
| 4 | seqf1o.4 | |- ( ph -> N e. ( ZZ>= ` M ) ) |
|
| 5 | seqf1o.5 | |- ( ph -> C C_ S ) |
|
| 6 | seqf1olem.5 | |- ( ph -> F : ( M ... ( N + 1 ) ) -1-1-onto-> ( M ... ( N + 1 ) ) ) |
|
| 7 | seqf1olem.6 | |- ( ph -> G : ( M ... ( N + 1 ) ) --> C ) |
|
| 8 | seqf1olem.7 | |- J = ( k e. ( M ... N ) |-> ( F ` if ( k < K , k , ( k + 1 ) ) ) ) |
|
| 9 | seqf1olem.8 | |- K = ( `' F ` ( N + 1 ) ) |
|
| 10 | fvexd | |- ( ( ph /\ k e. ( M ... N ) ) -> ( F ` if ( k < K , k , ( k + 1 ) ) ) e. _V ) |
|
| 11 | fvex | |- ( `' F ` x ) e. _V |
|
| 12 | ovex | |- ( ( `' F ` x ) - 1 ) e. _V |
|
| 13 | 11 12 | ifex | |- if ( ( `' F ` x ) < K , ( `' F ` x ) , ( ( `' F ` x ) - 1 ) ) e. _V |
| 14 | 13 | a1i | |- ( ( ph /\ x e. ( M ... N ) ) -> if ( ( `' F ` x ) < K , ( `' F ` x ) , ( ( `' F ` x ) - 1 ) ) e. _V ) |
| 15 | iftrue | |- ( k < K -> if ( k < K , k , ( k + 1 ) ) = k ) |
|
| 16 | 15 | fveq2d | |- ( k < K -> ( F ` if ( k < K , k , ( k + 1 ) ) ) = ( F ` k ) ) |
| 17 | 16 | eqeq2d | |- ( k < K -> ( x = ( F ` if ( k < K , k , ( k + 1 ) ) ) <-> x = ( F ` k ) ) ) |
| 18 | 17 | adantl | |- ( ( ( ph /\ k e. ( M ... N ) ) /\ k < K ) -> ( x = ( F ` if ( k < K , k , ( k + 1 ) ) ) <-> x = ( F ` k ) ) ) |
| 19 | simprr | |- ( ( ( ph /\ k e. ( M ... N ) ) /\ ( k < K /\ x = ( F ` k ) ) ) -> x = ( F ` k ) ) |
|
| 20 | elfzelz | |- ( k e. ( M ... N ) -> k e. ZZ ) |
|
| 21 | 20 | zred | |- ( k e. ( M ... N ) -> k e. RR ) |
| 22 | 21 | ad2antlr | |- ( ( ( ph /\ k e. ( M ... N ) ) /\ ( k < K /\ x = ( F ` k ) ) ) -> k e. RR ) |
| 23 | simprl | |- ( ( ( ph /\ k e. ( M ... N ) ) /\ ( k < K /\ x = ( F ` k ) ) ) -> k < K ) |
|
| 24 | 22 23 | gtned | |- ( ( ( ph /\ k e. ( M ... N ) ) /\ ( k < K /\ x = ( F ` k ) ) ) -> K =/= k ) |
| 25 | f1of | |- ( F : ( M ... ( N + 1 ) ) -1-1-onto-> ( M ... ( N + 1 ) ) -> F : ( M ... ( N + 1 ) ) --> ( M ... ( N + 1 ) ) ) |
|
| 26 | 6 25 | syl | |- ( ph -> F : ( M ... ( N + 1 ) ) --> ( M ... ( N + 1 ) ) ) |
| 27 | 26 | ad2antrr | |- ( ( ( ph /\ k e. ( M ... N ) ) /\ ( k < K /\ x = ( F ` k ) ) ) -> F : ( M ... ( N + 1 ) ) --> ( M ... ( N + 1 ) ) ) |
| 28 | fzssp1 | |- ( M ... N ) C_ ( M ... ( N + 1 ) ) |
|
| 29 | simplr | |- ( ( ( ph /\ k e. ( M ... N ) ) /\ ( k < K /\ x = ( F ` k ) ) ) -> k e. ( M ... N ) ) |
|
| 30 | 28 29 | sselid | |- ( ( ( ph /\ k e. ( M ... N ) ) /\ ( k < K /\ x = ( F ` k ) ) ) -> k e. ( M ... ( N + 1 ) ) ) |
| 31 | 27 30 | ffvelcdmd | |- ( ( ( ph /\ k e. ( M ... N ) ) /\ ( k < K /\ x = ( F ` k ) ) ) -> ( F ` k ) e. ( M ... ( N + 1 ) ) ) |
| 32 | elfzp1 | |- ( N e. ( ZZ>= ` M ) -> ( ( F ` k ) e. ( M ... ( N + 1 ) ) <-> ( ( F ` k ) e. ( M ... N ) \/ ( F ` k ) = ( N + 1 ) ) ) ) |
|
| 33 | 4 32 | syl | |- ( ph -> ( ( F ` k ) e. ( M ... ( N + 1 ) ) <-> ( ( F ` k ) e. ( M ... N ) \/ ( F ` k ) = ( N + 1 ) ) ) ) |
| 34 | 33 | ad2antrr | |- ( ( ( ph /\ k e. ( M ... N ) ) /\ ( k < K /\ x = ( F ` k ) ) ) -> ( ( F ` k ) e. ( M ... ( N + 1 ) ) <-> ( ( F ` k ) e. ( M ... N ) \/ ( F ` k ) = ( N + 1 ) ) ) ) |
| 35 | 31 34 | mpbid | |- ( ( ( ph /\ k e. ( M ... N ) ) /\ ( k < K /\ x = ( F ` k ) ) ) -> ( ( F ` k ) e. ( M ... N ) \/ ( F ` k ) = ( N + 1 ) ) ) |
| 36 | 35 | ord | |- ( ( ( ph /\ k e. ( M ... N ) ) /\ ( k < K /\ x = ( F ` k ) ) ) -> ( -. ( F ` k ) e. ( M ... N ) -> ( F ` k ) = ( N + 1 ) ) ) |
| 37 | 6 | ad2antrr | |- ( ( ( ph /\ k e. ( M ... N ) ) /\ ( k < K /\ x = ( F ` k ) ) ) -> F : ( M ... ( N + 1 ) ) -1-1-onto-> ( M ... ( N + 1 ) ) ) |
| 38 | f1ocnvfv | |- ( ( F : ( M ... ( N + 1 ) ) -1-1-onto-> ( M ... ( N + 1 ) ) /\ k e. ( M ... ( N + 1 ) ) ) -> ( ( F ` k ) = ( N + 1 ) -> ( `' F ` ( N + 1 ) ) = k ) ) |
|
| 39 | 37 30 38 | syl2anc | |- ( ( ( ph /\ k e. ( M ... N ) ) /\ ( k < K /\ x = ( F ` k ) ) ) -> ( ( F ` k ) = ( N + 1 ) -> ( `' F ` ( N + 1 ) ) = k ) ) |
| 40 | 9 | eqeq1i | |- ( K = k <-> ( `' F ` ( N + 1 ) ) = k ) |
| 41 | 39 40 | imbitrrdi | |- ( ( ( ph /\ k e. ( M ... N ) ) /\ ( k < K /\ x = ( F ` k ) ) ) -> ( ( F ` k ) = ( N + 1 ) -> K = k ) ) |
| 42 | 36 41 | syld | |- ( ( ( ph /\ k e. ( M ... N ) ) /\ ( k < K /\ x = ( F ` k ) ) ) -> ( -. ( F ` k ) e. ( M ... N ) -> K = k ) ) |
| 43 | 42 | necon1ad | |- ( ( ( ph /\ k e. ( M ... N ) ) /\ ( k < K /\ x = ( F ` k ) ) ) -> ( K =/= k -> ( F ` k ) e. ( M ... N ) ) ) |
| 44 | 24 43 | mpd | |- ( ( ( ph /\ k e. ( M ... N ) ) /\ ( k < K /\ x = ( F ` k ) ) ) -> ( F ` k ) e. ( M ... N ) ) |
| 45 | 19 44 | eqeltrd | |- ( ( ( ph /\ k e. ( M ... N ) ) /\ ( k < K /\ x = ( F ` k ) ) ) -> x e. ( M ... N ) ) |
| 46 | 19 | eqcomd | |- ( ( ( ph /\ k e. ( M ... N ) ) /\ ( k < K /\ x = ( F ` k ) ) ) -> ( F ` k ) = x ) |
| 47 | f1ocnvfv | |- ( ( F : ( M ... ( N + 1 ) ) -1-1-onto-> ( M ... ( N + 1 ) ) /\ k e. ( M ... ( N + 1 ) ) ) -> ( ( F ` k ) = x -> ( `' F ` x ) = k ) ) |
|
| 48 | 37 30 47 | syl2anc | |- ( ( ( ph /\ k e. ( M ... N ) ) /\ ( k < K /\ x = ( F ` k ) ) ) -> ( ( F ` k ) = x -> ( `' F ` x ) = k ) ) |
| 49 | 46 48 | mpd | |- ( ( ( ph /\ k e. ( M ... N ) ) /\ ( k < K /\ x = ( F ` k ) ) ) -> ( `' F ` x ) = k ) |
| 50 | 49 23 | eqbrtrd | |- ( ( ( ph /\ k e. ( M ... N ) ) /\ ( k < K /\ x = ( F ` k ) ) ) -> ( `' F ` x ) < K ) |
| 51 | iftrue | |- ( ( `' F ` x ) < K -> if ( ( `' F ` x ) < K , ( `' F ` x ) , ( ( `' F ` x ) - 1 ) ) = ( `' F ` x ) ) |
|
| 52 | 50 51 | syl | |- ( ( ( ph /\ k e. ( M ... N ) ) /\ ( k < K /\ x = ( F ` k ) ) ) -> if ( ( `' F ` x ) < K , ( `' F ` x ) , ( ( `' F ` x ) - 1 ) ) = ( `' F ` x ) ) |
| 53 | 52 49 | eqtr2d | |- ( ( ( ph /\ k e. ( M ... N ) ) /\ ( k < K /\ x = ( F ` k ) ) ) -> k = if ( ( `' F ` x ) < K , ( `' F ` x ) , ( ( `' F ` x ) - 1 ) ) ) |
| 54 | 45 53 | jca | |- ( ( ( ph /\ k e. ( M ... N ) ) /\ ( k < K /\ x = ( F ` k ) ) ) -> ( x e. ( M ... N ) /\ k = if ( ( `' F ` x ) < K , ( `' F ` x ) , ( ( `' F ` x ) - 1 ) ) ) ) |
| 55 | 54 | expr | |- ( ( ( ph /\ k e. ( M ... N ) ) /\ k < K ) -> ( x = ( F ` k ) -> ( x e. ( M ... N ) /\ k = if ( ( `' F ` x ) < K , ( `' F ` x ) , ( ( `' F ` x ) - 1 ) ) ) ) ) |
| 56 | 18 55 | sylbid | |- ( ( ( ph /\ k e. ( M ... N ) ) /\ k < K ) -> ( x = ( F ` if ( k < K , k , ( k + 1 ) ) ) -> ( x e. ( M ... N ) /\ k = if ( ( `' F ` x ) < K , ( `' F ` x ) , ( ( `' F ` x ) - 1 ) ) ) ) ) |
| 57 | iffalse | |- ( -. k < K -> if ( k < K , k , ( k + 1 ) ) = ( k + 1 ) ) |
|
| 58 | 57 | fveq2d | |- ( -. k < K -> ( F ` if ( k < K , k , ( k + 1 ) ) ) = ( F ` ( k + 1 ) ) ) |
| 59 | 58 | eqeq2d | |- ( -. k < K -> ( x = ( F ` if ( k < K , k , ( k + 1 ) ) ) <-> x = ( F ` ( k + 1 ) ) ) ) |
| 60 | 59 | adantl | |- ( ( ( ph /\ k e. ( M ... N ) ) /\ -. k < K ) -> ( x = ( F ` if ( k < K , k , ( k + 1 ) ) ) <-> x = ( F ` ( k + 1 ) ) ) ) |
| 61 | simprr | |- ( ( ( ph /\ k e. ( M ... N ) ) /\ ( -. k < K /\ x = ( F ` ( k + 1 ) ) ) ) -> x = ( F ` ( k + 1 ) ) ) |
|
| 62 | f1ocnv | |- ( F : ( M ... ( N + 1 ) ) -1-1-onto-> ( M ... ( N + 1 ) ) -> `' F : ( M ... ( N + 1 ) ) -1-1-onto-> ( M ... ( N + 1 ) ) ) |
|
| 63 | 6 62 | syl | |- ( ph -> `' F : ( M ... ( N + 1 ) ) -1-1-onto-> ( M ... ( N + 1 ) ) ) |
| 64 | f1of1 | |- ( `' F : ( M ... ( N + 1 ) ) -1-1-onto-> ( M ... ( N + 1 ) ) -> `' F : ( M ... ( N + 1 ) ) -1-1-> ( M ... ( N + 1 ) ) ) |
|
| 65 | 63 64 | syl | |- ( ph -> `' F : ( M ... ( N + 1 ) ) -1-1-> ( M ... ( N + 1 ) ) ) |
| 66 | f1f | |- ( `' F : ( M ... ( N + 1 ) ) -1-1-> ( M ... ( N + 1 ) ) -> `' F : ( M ... ( N + 1 ) ) --> ( M ... ( N + 1 ) ) ) |
|
| 67 | 65 66 | syl | |- ( ph -> `' F : ( M ... ( N + 1 ) ) --> ( M ... ( N + 1 ) ) ) |
| 68 | peano2uz | |- ( N e. ( ZZ>= ` M ) -> ( N + 1 ) e. ( ZZ>= ` M ) ) |
|
| 69 | 4 68 | syl | |- ( ph -> ( N + 1 ) e. ( ZZ>= ` M ) ) |
| 70 | eluzfz2 | |- ( ( N + 1 ) e. ( ZZ>= ` M ) -> ( N + 1 ) e. ( M ... ( N + 1 ) ) ) |
|
| 71 | 69 70 | syl | |- ( ph -> ( N + 1 ) e. ( M ... ( N + 1 ) ) ) |
| 72 | 67 71 | ffvelcdmd | |- ( ph -> ( `' F ` ( N + 1 ) ) e. ( M ... ( N + 1 ) ) ) |
| 73 | 9 72 | eqeltrid | |- ( ph -> K e. ( M ... ( N + 1 ) ) ) |
| 74 | 73 | elfzelzd | |- ( ph -> K e. ZZ ) |
| 75 | 74 | zred | |- ( ph -> K e. RR ) |
| 76 | 75 | ad2antrr | |- ( ( ( ph /\ k e. ( M ... N ) ) /\ ( -. k < K /\ x = ( F ` ( k + 1 ) ) ) ) -> K e. RR ) |
| 77 | 21 | ad2antlr | |- ( ( ( ph /\ k e. ( M ... N ) ) /\ ( -. k < K /\ x = ( F ` ( k + 1 ) ) ) ) -> k e. RR ) |
| 78 | peano2re | |- ( k e. RR -> ( k + 1 ) e. RR ) |
|
| 79 | 77 78 | syl | |- ( ( ( ph /\ k e. ( M ... N ) ) /\ ( -. k < K /\ x = ( F ` ( k + 1 ) ) ) ) -> ( k + 1 ) e. RR ) |
| 80 | simprl | |- ( ( ( ph /\ k e. ( M ... N ) ) /\ ( -. k < K /\ x = ( F ` ( k + 1 ) ) ) ) -> -. k < K ) |
|
| 81 | 76 77 80 | nltled | |- ( ( ( ph /\ k e. ( M ... N ) ) /\ ( -. k < K /\ x = ( F ` ( k + 1 ) ) ) ) -> K <_ k ) |
| 82 | 77 | ltp1d | |- ( ( ( ph /\ k e. ( M ... N ) ) /\ ( -. k < K /\ x = ( F ` ( k + 1 ) ) ) ) -> k < ( k + 1 ) ) |
| 83 | 76 77 79 81 82 | lelttrd | |- ( ( ( ph /\ k e. ( M ... N ) ) /\ ( -. k < K /\ x = ( F ` ( k + 1 ) ) ) ) -> K < ( k + 1 ) ) |
| 84 | 76 83 | ltned | |- ( ( ( ph /\ k e. ( M ... N ) ) /\ ( -. k < K /\ x = ( F ` ( k + 1 ) ) ) ) -> K =/= ( k + 1 ) ) |
| 85 | 26 | ad2antrr | |- ( ( ( ph /\ k e. ( M ... N ) ) /\ ( -. k < K /\ x = ( F ` ( k + 1 ) ) ) ) -> F : ( M ... ( N + 1 ) ) --> ( M ... ( N + 1 ) ) ) |
| 86 | fzp1elp1 | |- ( k e. ( M ... N ) -> ( k + 1 ) e. ( M ... ( N + 1 ) ) ) |
|
| 87 | 86 | ad2antlr | |- ( ( ( ph /\ k e. ( M ... N ) ) /\ ( -. k < K /\ x = ( F ` ( k + 1 ) ) ) ) -> ( k + 1 ) e. ( M ... ( N + 1 ) ) ) |
| 88 | 85 87 | ffvelcdmd | |- ( ( ( ph /\ k e. ( M ... N ) ) /\ ( -. k < K /\ x = ( F ` ( k + 1 ) ) ) ) -> ( F ` ( k + 1 ) ) e. ( M ... ( N + 1 ) ) ) |
| 89 | elfzp1 | |- ( N e. ( ZZ>= ` M ) -> ( ( F ` ( k + 1 ) ) e. ( M ... ( N + 1 ) ) <-> ( ( F ` ( k + 1 ) ) e. ( M ... N ) \/ ( F ` ( k + 1 ) ) = ( N + 1 ) ) ) ) |
|
| 90 | 4 89 | syl | |- ( ph -> ( ( F ` ( k + 1 ) ) e. ( M ... ( N + 1 ) ) <-> ( ( F ` ( k + 1 ) ) e. ( M ... N ) \/ ( F ` ( k + 1 ) ) = ( N + 1 ) ) ) ) |
| 91 | 90 | ad2antrr | |- ( ( ( ph /\ k e. ( M ... N ) ) /\ ( -. k < K /\ x = ( F ` ( k + 1 ) ) ) ) -> ( ( F ` ( k + 1 ) ) e. ( M ... ( N + 1 ) ) <-> ( ( F ` ( k + 1 ) ) e. ( M ... N ) \/ ( F ` ( k + 1 ) ) = ( N + 1 ) ) ) ) |
| 92 | 88 91 | mpbid | |- ( ( ( ph /\ k e. ( M ... N ) ) /\ ( -. k < K /\ x = ( F ` ( k + 1 ) ) ) ) -> ( ( F ` ( k + 1 ) ) e. ( M ... N ) \/ ( F ` ( k + 1 ) ) = ( N + 1 ) ) ) |
| 93 | 92 | ord | |- ( ( ( ph /\ k e. ( M ... N ) ) /\ ( -. k < K /\ x = ( F ` ( k + 1 ) ) ) ) -> ( -. ( F ` ( k + 1 ) ) e. ( M ... N ) -> ( F ` ( k + 1 ) ) = ( N + 1 ) ) ) |
| 94 | 6 | ad2antrr | |- ( ( ( ph /\ k e. ( M ... N ) ) /\ ( -. k < K /\ x = ( F ` ( k + 1 ) ) ) ) -> F : ( M ... ( N + 1 ) ) -1-1-onto-> ( M ... ( N + 1 ) ) ) |
| 95 | f1ocnvfv | |- ( ( F : ( M ... ( N + 1 ) ) -1-1-onto-> ( M ... ( N + 1 ) ) /\ ( k + 1 ) e. ( M ... ( N + 1 ) ) ) -> ( ( F ` ( k + 1 ) ) = ( N + 1 ) -> ( `' F ` ( N + 1 ) ) = ( k + 1 ) ) ) |
|
| 96 | 94 87 95 | syl2anc | |- ( ( ( ph /\ k e. ( M ... N ) ) /\ ( -. k < K /\ x = ( F ` ( k + 1 ) ) ) ) -> ( ( F ` ( k + 1 ) ) = ( N + 1 ) -> ( `' F ` ( N + 1 ) ) = ( k + 1 ) ) ) |
| 97 | 9 | eqeq1i | |- ( K = ( k + 1 ) <-> ( `' F ` ( N + 1 ) ) = ( k + 1 ) ) |
| 98 | 96 97 | imbitrrdi | |- ( ( ( ph /\ k e. ( M ... N ) ) /\ ( -. k < K /\ x = ( F ` ( k + 1 ) ) ) ) -> ( ( F ` ( k + 1 ) ) = ( N + 1 ) -> K = ( k + 1 ) ) ) |
| 99 | 93 98 | syld | |- ( ( ( ph /\ k e. ( M ... N ) ) /\ ( -. k < K /\ x = ( F ` ( k + 1 ) ) ) ) -> ( -. ( F ` ( k + 1 ) ) e. ( M ... N ) -> K = ( k + 1 ) ) ) |
| 100 | 99 | necon1ad | |- ( ( ( ph /\ k e. ( M ... N ) ) /\ ( -. k < K /\ x = ( F ` ( k + 1 ) ) ) ) -> ( K =/= ( k + 1 ) -> ( F ` ( k + 1 ) ) e. ( M ... N ) ) ) |
| 101 | 84 100 | mpd | |- ( ( ( ph /\ k e. ( M ... N ) ) /\ ( -. k < K /\ x = ( F ` ( k + 1 ) ) ) ) -> ( F ` ( k + 1 ) ) e. ( M ... N ) ) |
| 102 | 61 101 | eqeltrd | |- ( ( ( ph /\ k e. ( M ... N ) ) /\ ( -. k < K /\ x = ( F ` ( k + 1 ) ) ) ) -> x e. ( M ... N ) ) |
| 103 | 61 | eqcomd | |- ( ( ( ph /\ k e. ( M ... N ) ) /\ ( -. k < K /\ x = ( F ` ( k + 1 ) ) ) ) -> ( F ` ( k + 1 ) ) = x ) |
| 104 | f1ocnvfv | |- ( ( F : ( M ... ( N + 1 ) ) -1-1-onto-> ( M ... ( N + 1 ) ) /\ ( k + 1 ) e. ( M ... ( N + 1 ) ) ) -> ( ( F ` ( k + 1 ) ) = x -> ( `' F ` x ) = ( k + 1 ) ) ) |
|
| 105 | 94 87 104 | syl2anc | |- ( ( ( ph /\ k e. ( M ... N ) ) /\ ( -. k < K /\ x = ( F ` ( k + 1 ) ) ) ) -> ( ( F ` ( k + 1 ) ) = x -> ( `' F ` x ) = ( k + 1 ) ) ) |
| 106 | 103 105 | mpd | |- ( ( ( ph /\ k e. ( M ... N ) ) /\ ( -. k < K /\ x = ( F ` ( k + 1 ) ) ) ) -> ( `' F ` x ) = ( k + 1 ) ) |
| 107 | 106 | breq1d | |- ( ( ( ph /\ k e. ( M ... N ) ) /\ ( -. k < K /\ x = ( F ` ( k + 1 ) ) ) ) -> ( ( `' F ` x ) < K <-> ( k + 1 ) < K ) ) |
| 108 | lttr | |- ( ( k e. RR /\ ( k + 1 ) e. RR /\ K e. RR ) -> ( ( k < ( k + 1 ) /\ ( k + 1 ) < K ) -> k < K ) ) |
|
| 109 | 77 79 76 108 | syl3anc | |- ( ( ( ph /\ k e. ( M ... N ) ) /\ ( -. k < K /\ x = ( F ` ( k + 1 ) ) ) ) -> ( ( k < ( k + 1 ) /\ ( k + 1 ) < K ) -> k < K ) ) |
| 110 | 82 109 | mpand | |- ( ( ( ph /\ k e. ( M ... N ) ) /\ ( -. k < K /\ x = ( F ` ( k + 1 ) ) ) ) -> ( ( k + 1 ) < K -> k < K ) ) |
| 111 | 107 110 | sylbid | |- ( ( ( ph /\ k e. ( M ... N ) ) /\ ( -. k < K /\ x = ( F ` ( k + 1 ) ) ) ) -> ( ( `' F ` x ) < K -> k < K ) ) |
| 112 | 80 111 | mtod | |- ( ( ( ph /\ k e. ( M ... N ) ) /\ ( -. k < K /\ x = ( F ` ( k + 1 ) ) ) ) -> -. ( `' F ` x ) < K ) |
| 113 | iffalse | |- ( -. ( `' F ` x ) < K -> if ( ( `' F ` x ) < K , ( `' F ` x ) , ( ( `' F ` x ) - 1 ) ) = ( ( `' F ` x ) - 1 ) ) |
|
| 114 | 112 113 | syl | |- ( ( ( ph /\ k e. ( M ... N ) ) /\ ( -. k < K /\ x = ( F ` ( k + 1 ) ) ) ) -> if ( ( `' F ` x ) < K , ( `' F ` x ) , ( ( `' F ` x ) - 1 ) ) = ( ( `' F ` x ) - 1 ) ) |
| 115 | 106 | oveq1d | |- ( ( ( ph /\ k e. ( M ... N ) ) /\ ( -. k < K /\ x = ( F ` ( k + 1 ) ) ) ) -> ( ( `' F ` x ) - 1 ) = ( ( k + 1 ) - 1 ) ) |
| 116 | 77 | recnd | |- ( ( ( ph /\ k e. ( M ... N ) ) /\ ( -. k < K /\ x = ( F ` ( k + 1 ) ) ) ) -> k e. CC ) |
| 117 | ax-1cn | |- 1 e. CC |
|
| 118 | pncan | |- ( ( k e. CC /\ 1 e. CC ) -> ( ( k + 1 ) - 1 ) = k ) |
|
| 119 | 116 117 118 | sylancl | |- ( ( ( ph /\ k e. ( M ... N ) ) /\ ( -. k < K /\ x = ( F ` ( k + 1 ) ) ) ) -> ( ( k + 1 ) - 1 ) = k ) |
| 120 | 114 115 119 | 3eqtrrd | |- ( ( ( ph /\ k e. ( M ... N ) ) /\ ( -. k < K /\ x = ( F ` ( k + 1 ) ) ) ) -> k = if ( ( `' F ` x ) < K , ( `' F ` x ) , ( ( `' F ` x ) - 1 ) ) ) |
| 121 | 102 120 | jca | |- ( ( ( ph /\ k e. ( M ... N ) ) /\ ( -. k < K /\ x = ( F ` ( k + 1 ) ) ) ) -> ( x e. ( M ... N ) /\ k = if ( ( `' F ` x ) < K , ( `' F ` x ) , ( ( `' F ` x ) - 1 ) ) ) ) |
| 122 | 121 | expr | |- ( ( ( ph /\ k e. ( M ... N ) ) /\ -. k < K ) -> ( x = ( F ` ( k + 1 ) ) -> ( x e. ( M ... N ) /\ k = if ( ( `' F ` x ) < K , ( `' F ` x ) , ( ( `' F ` x ) - 1 ) ) ) ) ) |
| 123 | 60 122 | sylbid | |- ( ( ( ph /\ k e. ( M ... N ) ) /\ -. k < K ) -> ( x = ( F ` if ( k < K , k , ( k + 1 ) ) ) -> ( x e. ( M ... N ) /\ k = if ( ( `' F ` x ) < K , ( `' F ` x ) , ( ( `' F ` x ) - 1 ) ) ) ) ) |
| 124 | 56 123 | pm2.61dan | |- ( ( ph /\ k e. ( M ... N ) ) -> ( x = ( F ` if ( k < K , k , ( k + 1 ) ) ) -> ( x e. ( M ... N ) /\ k = if ( ( `' F ` x ) < K , ( `' F ` x ) , ( ( `' F ` x ) - 1 ) ) ) ) ) |
| 125 | 124 | expimpd | |- ( ph -> ( ( k e. ( M ... N ) /\ x = ( F ` if ( k < K , k , ( k + 1 ) ) ) ) -> ( x e. ( M ... N ) /\ k = if ( ( `' F ` x ) < K , ( `' F ` x ) , ( ( `' F ` x ) - 1 ) ) ) ) ) |
| 126 | 51 | eqeq2d | |- ( ( `' F ` x ) < K -> ( k = if ( ( `' F ` x ) < K , ( `' F ` x ) , ( ( `' F ` x ) - 1 ) ) <-> k = ( `' F ` x ) ) ) |
| 127 | 126 | adantl | |- ( ( ( ph /\ x e. ( M ... N ) ) /\ ( `' F ` x ) < K ) -> ( k = if ( ( `' F ` x ) < K , ( `' F ` x ) , ( ( `' F ` x ) - 1 ) ) <-> k = ( `' F ` x ) ) ) |
| 128 | eluzel2 | |- ( N e. ( ZZ>= ` M ) -> M e. ZZ ) |
|
| 129 | 4 128 | syl | |- ( ph -> M e. ZZ ) |
| 130 | 129 | ad2antrr | |- ( ( ( ph /\ x e. ( M ... N ) ) /\ ( ( `' F ` x ) < K /\ k = ( `' F ` x ) ) ) -> M e. ZZ ) |
| 131 | eluzelz | |- ( N e. ( ZZ>= ` M ) -> N e. ZZ ) |
|
| 132 | 4 131 | syl | |- ( ph -> N e. ZZ ) |
| 133 | 132 | ad2antrr | |- ( ( ( ph /\ x e. ( M ... N ) ) /\ ( ( `' F ` x ) < K /\ k = ( `' F ` x ) ) ) -> N e. ZZ ) |
| 134 | simprr | |- ( ( ( ph /\ x e. ( M ... N ) ) /\ ( ( `' F ` x ) < K /\ k = ( `' F ` x ) ) ) -> k = ( `' F ` x ) ) |
|
| 135 | 67 | ad2antrr | |- ( ( ( ph /\ x e. ( M ... N ) ) /\ ( ( `' F ` x ) < K /\ k = ( `' F ` x ) ) ) -> `' F : ( M ... ( N + 1 ) ) --> ( M ... ( N + 1 ) ) ) |
| 136 | simplr | |- ( ( ( ph /\ x e. ( M ... N ) ) /\ ( ( `' F ` x ) < K /\ k = ( `' F ` x ) ) ) -> x e. ( M ... N ) ) |
|
| 137 | 28 136 | sselid | |- ( ( ( ph /\ x e. ( M ... N ) ) /\ ( ( `' F ` x ) < K /\ k = ( `' F ` x ) ) ) -> x e. ( M ... ( N + 1 ) ) ) |
| 138 | 135 137 | ffvelcdmd | |- ( ( ( ph /\ x e. ( M ... N ) ) /\ ( ( `' F ` x ) < K /\ k = ( `' F ` x ) ) ) -> ( `' F ` x ) e. ( M ... ( N + 1 ) ) ) |
| 139 | 134 138 | eqeltrd | |- ( ( ( ph /\ x e. ( M ... N ) ) /\ ( ( `' F ` x ) < K /\ k = ( `' F ` x ) ) ) -> k e. ( M ... ( N + 1 ) ) ) |
| 140 | 139 | elfzelzd | |- ( ( ( ph /\ x e. ( M ... N ) ) /\ ( ( `' F ` x ) < K /\ k = ( `' F ` x ) ) ) -> k e. ZZ ) |
| 141 | elfzle1 | |- ( k e. ( M ... ( N + 1 ) ) -> M <_ k ) |
|
| 142 | 139 141 | syl | |- ( ( ( ph /\ x e. ( M ... N ) ) /\ ( ( `' F ` x ) < K /\ k = ( `' F ` x ) ) ) -> M <_ k ) |
| 143 | 140 | zred | |- ( ( ( ph /\ x e. ( M ... N ) ) /\ ( ( `' F ` x ) < K /\ k = ( `' F ` x ) ) ) -> k e. RR ) |
| 144 | 75 | ad2antrr | |- ( ( ( ph /\ x e. ( M ... N ) ) /\ ( ( `' F ` x ) < K /\ k = ( `' F ` x ) ) ) -> K e. RR ) |
| 145 | 132 | peano2zd | |- ( ph -> ( N + 1 ) e. ZZ ) |
| 146 | 145 | zred | |- ( ph -> ( N + 1 ) e. RR ) |
| 147 | 146 | ad2antrr | |- ( ( ( ph /\ x e. ( M ... N ) ) /\ ( ( `' F ` x ) < K /\ k = ( `' F ` x ) ) ) -> ( N + 1 ) e. RR ) |
| 148 | simprl | |- ( ( ( ph /\ x e. ( M ... N ) ) /\ ( ( `' F ` x ) < K /\ k = ( `' F ` x ) ) ) -> ( `' F ` x ) < K ) |
|
| 149 | 134 148 | eqbrtrd | |- ( ( ( ph /\ x e. ( M ... N ) ) /\ ( ( `' F ` x ) < K /\ k = ( `' F ` x ) ) ) -> k < K ) |
| 150 | elfzle2 | |- ( K e. ( M ... ( N + 1 ) ) -> K <_ ( N + 1 ) ) |
|
| 151 | 73 150 | syl | |- ( ph -> K <_ ( N + 1 ) ) |
| 152 | 151 | ad2antrr | |- ( ( ( ph /\ x e. ( M ... N ) ) /\ ( ( `' F ` x ) < K /\ k = ( `' F ` x ) ) ) -> K <_ ( N + 1 ) ) |
| 153 | 143 144 147 149 152 | ltletrd | |- ( ( ( ph /\ x e. ( M ... N ) ) /\ ( ( `' F ` x ) < K /\ k = ( `' F ` x ) ) ) -> k < ( N + 1 ) ) |
| 154 | zleltp1 | |- ( ( k e. ZZ /\ N e. ZZ ) -> ( k <_ N <-> k < ( N + 1 ) ) ) |
|
| 155 | 140 133 154 | syl2anc | |- ( ( ( ph /\ x e. ( M ... N ) ) /\ ( ( `' F ` x ) < K /\ k = ( `' F ` x ) ) ) -> ( k <_ N <-> k < ( N + 1 ) ) ) |
| 156 | 153 155 | mpbird | |- ( ( ( ph /\ x e. ( M ... N ) ) /\ ( ( `' F ` x ) < K /\ k = ( `' F ` x ) ) ) -> k <_ N ) |
| 157 | 130 133 140 142 156 | elfzd | |- ( ( ( ph /\ x e. ( M ... N ) ) /\ ( ( `' F ` x ) < K /\ k = ( `' F ` x ) ) ) -> k e. ( M ... N ) ) |
| 158 | 149 16 | syl | |- ( ( ( ph /\ x e. ( M ... N ) ) /\ ( ( `' F ` x ) < K /\ k = ( `' F ` x ) ) ) -> ( F ` if ( k < K , k , ( k + 1 ) ) ) = ( F ` k ) ) |
| 159 | 134 | fveq2d | |- ( ( ( ph /\ x e. ( M ... N ) ) /\ ( ( `' F ` x ) < K /\ k = ( `' F ` x ) ) ) -> ( F ` k ) = ( F ` ( `' F ` x ) ) ) |
| 160 | 6 | ad2antrr | |- ( ( ( ph /\ x e. ( M ... N ) ) /\ ( ( `' F ` x ) < K /\ k = ( `' F ` x ) ) ) -> F : ( M ... ( N + 1 ) ) -1-1-onto-> ( M ... ( N + 1 ) ) ) |
| 161 | f1ocnvfv2 | |- ( ( F : ( M ... ( N + 1 ) ) -1-1-onto-> ( M ... ( N + 1 ) ) /\ x e. ( M ... ( N + 1 ) ) ) -> ( F ` ( `' F ` x ) ) = x ) |
|
| 162 | 160 137 161 | syl2anc | |- ( ( ( ph /\ x e. ( M ... N ) ) /\ ( ( `' F ` x ) < K /\ k = ( `' F ` x ) ) ) -> ( F ` ( `' F ` x ) ) = x ) |
| 163 | 158 159 162 | 3eqtrrd | |- ( ( ( ph /\ x e. ( M ... N ) ) /\ ( ( `' F ` x ) < K /\ k = ( `' F ` x ) ) ) -> x = ( F ` if ( k < K , k , ( k + 1 ) ) ) ) |
| 164 | 157 163 | jca | |- ( ( ( ph /\ x e. ( M ... N ) ) /\ ( ( `' F ` x ) < K /\ k = ( `' F ` x ) ) ) -> ( k e. ( M ... N ) /\ x = ( F ` if ( k < K , k , ( k + 1 ) ) ) ) ) |
| 165 | 164 | expr | |- ( ( ( ph /\ x e. ( M ... N ) ) /\ ( `' F ` x ) < K ) -> ( k = ( `' F ` x ) -> ( k e. ( M ... N ) /\ x = ( F ` if ( k < K , k , ( k + 1 ) ) ) ) ) ) |
| 166 | 127 165 | sylbid | |- ( ( ( ph /\ x e. ( M ... N ) ) /\ ( `' F ` x ) < K ) -> ( k = if ( ( `' F ` x ) < K , ( `' F ` x ) , ( ( `' F ` x ) - 1 ) ) -> ( k e. ( M ... N ) /\ x = ( F ` if ( k < K , k , ( k + 1 ) ) ) ) ) ) |
| 167 | 113 | eqeq2d | |- ( -. ( `' F ` x ) < K -> ( k = if ( ( `' F ` x ) < K , ( `' F ` x ) , ( ( `' F ` x ) - 1 ) ) <-> k = ( ( `' F ` x ) - 1 ) ) ) |
| 168 | 167 | adantl | |- ( ( ( ph /\ x e. ( M ... N ) ) /\ -. ( `' F ` x ) < K ) -> ( k = if ( ( `' F ` x ) < K , ( `' F ` x ) , ( ( `' F ` x ) - 1 ) ) <-> k = ( ( `' F ` x ) - 1 ) ) ) |
| 169 | 129 | ad2antrr | |- ( ( ( ph /\ x e. ( M ... N ) ) /\ ( -. ( `' F ` x ) < K /\ k = ( ( `' F ` x ) - 1 ) ) ) -> M e. ZZ ) |
| 170 | 132 | ad2antrr | |- ( ( ( ph /\ x e. ( M ... N ) ) /\ ( -. ( `' F ` x ) < K /\ k = ( ( `' F ` x ) - 1 ) ) ) -> N e. ZZ ) |
| 171 | simprr | |- ( ( ( ph /\ x e. ( M ... N ) ) /\ ( -. ( `' F ` x ) < K /\ k = ( ( `' F ` x ) - 1 ) ) ) -> k = ( ( `' F ` x ) - 1 ) ) |
|
| 172 | 67 | ad2antrr | |- ( ( ( ph /\ x e. ( M ... N ) ) /\ ( -. ( `' F ` x ) < K /\ k = ( ( `' F ` x ) - 1 ) ) ) -> `' F : ( M ... ( N + 1 ) ) --> ( M ... ( N + 1 ) ) ) |
| 173 | simplr | |- ( ( ( ph /\ x e. ( M ... N ) ) /\ ( -. ( `' F ` x ) < K /\ k = ( ( `' F ` x ) - 1 ) ) ) -> x e. ( M ... N ) ) |
|
| 174 | 28 173 | sselid | |- ( ( ( ph /\ x e. ( M ... N ) ) /\ ( -. ( `' F ` x ) < K /\ k = ( ( `' F ` x ) - 1 ) ) ) -> x e. ( M ... ( N + 1 ) ) ) |
| 175 | 172 174 | ffvelcdmd | |- ( ( ( ph /\ x e. ( M ... N ) ) /\ ( -. ( `' F ` x ) < K /\ k = ( ( `' F ` x ) - 1 ) ) ) -> ( `' F ` x ) e. ( M ... ( N + 1 ) ) ) |
| 176 | 175 | elfzelzd | |- ( ( ( ph /\ x e. ( M ... N ) ) /\ ( -. ( `' F ` x ) < K /\ k = ( ( `' F ` x ) - 1 ) ) ) -> ( `' F ` x ) e. ZZ ) |
| 177 | peano2zm | |- ( ( `' F ` x ) e. ZZ -> ( ( `' F ` x ) - 1 ) e. ZZ ) |
|
| 178 | 176 177 | syl | |- ( ( ( ph /\ x e. ( M ... N ) ) /\ ( -. ( `' F ` x ) < K /\ k = ( ( `' F ` x ) - 1 ) ) ) -> ( ( `' F ` x ) - 1 ) e. ZZ ) |
| 179 | 171 178 | eqeltrd | |- ( ( ( ph /\ x e. ( M ... N ) ) /\ ( -. ( `' F ` x ) < K /\ k = ( ( `' F ` x ) - 1 ) ) ) -> k e. ZZ ) |
| 180 | 129 | zred | |- ( ph -> M e. RR ) |
| 181 | 180 | ad2antrr | |- ( ( ( ph /\ x e. ( M ... N ) ) /\ ( -. ( `' F ` x ) < K /\ k = ( ( `' F ` x ) - 1 ) ) ) -> M e. RR ) |
| 182 | 75 | ad2antrr | |- ( ( ( ph /\ x e. ( M ... N ) ) /\ ( -. ( `' F ` x ) < K /\ k = ( ( `' F ` x ) - 1 ) ) ) -> K e. RR ) |
| 183 | 179 | zred | |- ( ( ( ph /\ x e. ( M ... N ) ) /\ ( -. ( `' F ` x ) < K /\ k = ( ( `' F ` x ) - 1 ) ) ) -> k e. RR ) |
| 184 | elfzle1 | |- ( K e. ( M ... ( N + 1 ) ) -> M <_ K ) |
|
| 185 | 73 184 | syl | |- ( ph -> M <_ K ) |
| 186 | 185 | ad2antrr | |- ( ( ( ph /\ x e. ( M ... N ) ) /\ ( -. ( `' F ` x ) < K /\ k = ( ( `' F ` x ) - 1 ) ) ) -> M <_ K ) |
| 187 | 176 | zred | |- ( ( ( ph /\ x e. ( M ... N ) ) /\ ( -. ( `' F ` x ) < K /\ k = ( ( `' F ` x ) - 1 ) ) ) -> ( `' F ` x ) e. RR ) |
| 188 | simprl | |- ( ( ( ph /\ x e. ( M ... N ) ) /\ ( -. ( `' F ` x ) < K /\ k = ( ( `' F ` x ) - 1 ) ) ) -> -. ( `' F ` x ) < K ) |
|
| 189 | 182 187 188 | nltled | |- ( ( ( ph /\ x e. ( M ... N ) ) /\ ( -. ( `' F ` x ) < K /\ k = ( ( `' F ` x ) - 1 ) ) ) -> K <_ ( `' F ` x ) ) |
| 190 | elfzelz | |- ( x e. ( M ... N ) -> x e. ZZ ) |
|
| 191 | 190 | adantl | |- ( ( ph /\ x e. ( M ... N ) ) -> x e. ZZ ) |
| 192 | 191 | zred | |- ( ( ph /\ x e. ( M ... N ) ) -> x e. RR ) |
| 193 | 132 | zred | |- ( ph -> N e. RR ) |
| 194 | 193 | adantr | |- ( ( ph /\ x e. ( M ... N ) ) -> N e. RR ) |
| 195 | 146 | adantr | |- ( ( ph /\ x e. ( M ... N ) ) -> ( N + 1 ) e. RR ) |
| 196 | elfzle2 | |- ( x e. ( M ... N ) -> x <_ N ) |
|
| 197 | 196 | adantl | |- ( ( ph /\ x e. ( M ... N ) ) -> x <_ N ) |
| 198 | 194 | ltp1d | |- ( ( ph /\ x e. ( M ... N ) ) -> N < ( N + 1 ) ) |
| 199 | 192 194 195 197 198 | lelttrd | |- ( ( ph /\ x e. ( M ... N ) ) -> x < ( N + 1 ) ) |
| 200 | 192 199 | gtned | |- ( ( ph /\ x e. ( M ... N ) ) -> ( N + 1 ) =/= x ) |
| 201 | 200 | adantr | |- ( ( ( ph /\ x e. ( M ... N ) ) /\ ( -. ( `' F ` x ) < K /\ k = ( ( `' F ` x ) - 1 ) ) ) -> ( N + 1 ) =/= x ) |
| 202 | 65 | ad2antrr | |- ( ( ( ph /\ x e. ( M ... N ) ) /\ ( -. ( `' F ` x ) < K /\ k = ( ( `' F ` x ) - 1 ) ) ) -> `' F : ( M ... ( N + 1 ) ) -1-1-> ( M ... ( N + 1 ) ) ) |
| 203 | 71 | ad2antrr | |- ( ( ( ph /\ x e. ( M ... N ) ) /\ ( -. ( `' F ` x ) < K /\ k = ( ( `' F ` x ) - 1 ) ) ) -> ( N + 1 ) e. ( M ... ( N + 1 ) ) ) |
| 204 | f1fveq | |- ( ( `' F : ( M ... ( N + 1 ) ) -1-1-> ( M ... ( N + 1 ) ) /\ ( ( N + 1 ) e. ( M ... ( N + 1 ) ) /\ x e. ( M ... ( N + 1 ) ) ) ) -> ( ( `' F ` ( N + 1 ) ) = ( `' F ` x ) <-> ( N + 1 ) = x ) ) |
|
| 205 | 202 203 174 204 | syl12anc | |- ( ( ( ph /\ x e. ( M ... N ) ) /\ ( -. ( `' F ` x ) < K /\ k = ( ( `' F ` x ) - 1 ) ) ) -> ( ( `' F ` ( N + 1 ) ) = ( `' F ` x ) <-> ( N + 1 ) = x ) ) |
| 206 | 205 | necon3bid | |- ( ( ( ph /\ x e. ( M ... N ) ) /\ ( -. ( `' F ` x ) < K /\ k = ( ( `' F ` x ) - 1 ) ) ) -> ( ( `' F ` ( N + 1 ) ) =/= ( `' F ` x ) <-> ( N + 1 ) =/= x ) ) |
| 207 | 201 206 | mpbird | |- ( ( ( ph /\ x e. ( M ... N ) ) /\ ( -. ( `' F ` x ) < K /\ k = ( ( `' F ` x ) - 1 ) ) ) -> ( `' F ` ( N + 1 ) ) =/= ( `' F ` x ) ) |
| 208 | 9 | neeq1i | |- ( K =/= ( `' F ` x ) <-> ( `' F ` ( N + 1 ) ) =/= ( `' F ` x ) ) |
| 209 | 207 208 | sylibr | |- ( ( ( ph /\ x e. ( M ... N ) ) /\ ( -. ( `' F ` x ) < K /\ k = ( ( `' F ` x ) - 1 ) ) ) -> K =/= ( `' F ` x ) ) |
| 210 | 209 | necomd | |- ( ( ( ph /\ x e. ( M ... N ) ) /\ ( -. ( `' F ` x ) < K /\ k = ( ( `' F ` x ) - 1 ) ) ) -> ( `' F ` x ) =/= K ) |
| 211 | 182 187 189 210 | leneltd | |- ( ( ( ph /\ x e. ( M ... N ) ) /\ ( -. ( `' F ` x ) < K /\ k = ( ( `' F ` x ) - 1 ) ) ) -> K < ( `' F ` x ) ) |
| 212 | 74 | ad2antrr | |- ( ( ( ph /\ x e. ( M ... N ) ) /\ ( -. ( `' F ` x ) < K /\ k = ( ( `' F ` x ) - 1 ) ) ) -> K e. ZZ ) |
| 213 | zltlem1 | |- ( ( K e. ZZ /\ ( `' F ` x ) e. ZZ ) -> ( K < ( `' F ` x ) <-> K <_ ( ( `' F ` x ) - 1 ) ) ) |
|
| 214 | 212 176 213 | syl2anc | |- ( ( ( ph /\ x e. ( M ... N ) ) /\ ( -. ( `' F ` x ) < K /\ k = ( ( `' F ` x ) - 1 ) ) ) -> ( K < ( `' F ` x ) <-> K <_ ( ( `' F ` x ) - 1 ) ) ) |
| 215 | 211 214 | mpbid | |- ( ( ( ph /\ x e. ( M ... N ) ) /\ ( -. ( `' F ` x ) < K /\ k = ( ( `' F ` x ) - 1 ) ) ) -> K <_ ( ( `' F ` x ) - 1 ) ) |
| 216 | 215 171 | breqtrrd | |- ( ( ( ph /\ x e. ( M ... N ) ) /\ ( -. ( `' F ` x ) < K /\ k = ( ( `' F ` x ) - 1 ) ) ) -> K <_ k ) |
| 217 | 181 182 183 186 216 | letrd | |- ( ( ( ph /\ x e. ( M ... N ) ) /\ ( -. ( `' F ` x ) < K /\ k = ( ( `' F ` x ) - 1 ) ) ) -> M <_ k ) |
| 218 | elfzle2 | |- ( ( `' F ` x ) e. ( M ... ( N + 1 ) ) -> ( `' F ` x ) <_ ( N + 1 ) ) |
|
| 219 | 175 218 | syl | |- ( ( ( ph /\ x e. ( M ... N ) ) /\ ( -. ( `' F ` x ) < K /\ k = ( ( `' F ` x ) - 1 ) ) ) -> ( `' F ` x ) <_ ( N + 1 ) ) |
| 220 | 193 | ad2antrr | |- ( ( ( ph /\ x e. ( M ... N ) ) /\ ( -. ( `' F ` x ) < K /\ k = ( ( `' F ` x ) - 1 ) ) ) -> N e. RR ) |
| 221 | 1re | |- 1 e. RR |
|
| 222 | lesubadd | |- ( ( ( `' F ` x ) e. RR /\ 1 e. RR /\ N e. RR ) -> ( ( ( `' F ` x ) - 1 ) <_ N <-> ( `' F ` x ) <_ ( N + 1 ) ) ) |
|
| 223 | 221 222 | mp3an2 | |- ( ( ( `' F ` x ) e. RR /\ N e. RR ) -> ( ( ( `' F ` x ) - 1 ) <_ N <-> ( `' F ` x ) <_ ( N + 1 ) ) ) |
| 224 | 187 220 223 | syl2anc | |- ( ( ( ph /\ x e. ( M ... N ) ) /\ ( -. ( `' F ` x ) < K /\ k = ( ( `' F ` x ) - 1 ) ) ) -> ( ( ( `' F ` x ) - 1 ) <_ N <-> ( `' F ` x ) <_ ( N + 1 ) ) ) |
| 225 | 219 224 | mpbird | |- ( ( ( ph /\ x e. ( M ... N ) ) /\ ( -. ( `' F ` x ) < K /\ k = ( ( `' F ` x ) - 1 ) ) ) -> ( ( `' F ` x ) - 1 ) <_ N ) |
| 226 | 171 225 | eqbrtrd | |- ( ( ( ph /\ x e. ( M ... N ) ) /\ ( -. ( `' F ` x ) < K /\ k = ( ( `' F ` x ) - 1 ) ) ) -> k <_ N ) |
| 227 | 169 170 179 217 226 | elfzd | |- ( ( ( ph /\ x e. ( M ... N ) ) /\ ( -. ( `' F ` x ) < K /\ k = ( ( `' F ` x ) - 1 ) ) ) -> k e. ( M ... N ) ) |
| 228 | 182 183 216 | lensymd | |- ( ( ( ph /\ x e. ( M ... N ) ) /\ ( -. ( `' F ` x ) < K /\ k = ( ( `' F ` x ) - 1 ) ) ) -> -. k < K ) |
| 229 | 228 58 | syl | |- ( ( ( ph /\ x e. ( M ... N ) ) /\ ( -. ( `' F ` x ) < K /\ k = ( ( `' F ` x ) - 1 ) ) ) -> ( F ` if ( k < K , k , ( k + 1 ) ) ) = ( F ` ( k + 1 ) ) ) |
| 230 | 171 | oveq1d | |- ( ( ( ph /\ x e. ( M ... N ) ) /\ ( -. ( `' F ` x ) < K /\ k = ( ( `' F ` x ) - 1 ) ) ) -> ( k + 1 ) = ( ( ( `' F ` x ) - 1 ) + 1 ) ) |
| 231 | 176 | zcnd | |- ( ( ( ph /\ x e. ( M ... N ) ) /\ ( -. ( `' F ` x ) < K /\ k = ( ( `' F ` x ) - 1 ) ) ) -> ( `' F ` x ) e. CC ) |
| 232 | npcan | |- ( ( ( `' F ` x ) e. CC /\ 1 e. CC ) -> ( ( ( `' F ` x ) - 1 ) + 1 ) = ( `' F ` x ) ) |
|
| 233 | 231 117 232 | sylancl | |- ( ( ( ph /\ x e. ( M ... N ) ) /\ ( -. ( `' F ` x ) < K /\ k = ( ( `' F ` x ) - 1 ) ) ) -> ( ( ( `' F ` x ) - 1 ) + 1 ) = ( `' F ` x ) ) |
| 234 | 230 233 | eqtrd | |- ( ( ( ph /\ x e. ( M ... N ) ) /\ ( -. ( `' F ` x ) < K /\ k = ( ( `' F ` x ) - 1 ) ) ) -> ( k + 1 ) = ( `' F ` x ) ) |
| 235 | 234 | fveq2d | |- ( ( ( ph /\ x e. ( M ... N ) ) /\ ( -. ( `' F ` x ) < K /\ k = ( ( `' F ` x ) - 1 ) ) ) -> ( F ` ( k + 1 ) ) = ( F ` ( `' F ` x ) ) ) |
| 236 | 6 | ad2antrr | |- ( ( ( ph /\ x e. ( M ... N ) ) /\ ( -. ( `' F ` x ) < K /\ k = ( ( `' F ` x ) - 1 ) ) ) -> F : ( M ... ( N + 1 ) ) -1-1-onto-> ( M ... ( N + 1 ) ) ) |
| 237 | 236 174 161 | syl2anc | |- ( ( ( ph /\ x e. ( M ... N ) ) /\ ( -. ( `' F ` x ) < K /\ k = ( ( `' F ` x ) - 1 ) ) ) -> ( F ` ( `' F ` x ) ) = x ) |
| 238 | 229 235 237 | 3eqtrrd | |- ( ( ( ph /\ x e. ( M ... N ) ) /\ ( -. ( `' F ` x ) < K /\ k = ( ( `' F ` x ) - 1 ) ) ) -> x = ( F ` if ( k < K , k , ( k + 1 ) ) ) ) |
| 239 | 227 238 | jca | |- ( ( ( ph /\ x e. ( M ... N ) ) /\ ( -. ( `' F ` x ) < K /\ k = ( ( `' F ` x ) - 1 ) ) ) -> ( k e. ( M ... N ) /\ x = ( F ` if ( k < K , k , ( k + 1 ) ) ) ) ) |
| 240 | 239 | expr | |- ( ( ( ph /\ x e. ( M ... N ) ) /\ -. ( `' F ` x ) < K ) -> ( k = ( ( `' F ` x ) - 1 ) -> ( k e. ( M ... N ) /\ x = ( F ` if ( k < K , k , ( k + 1 ) ) ) ) ) ) |
| 241 | 168 240 | sylbid | |- ( ( ( ph /\ x e. ( M ... N ) ) /\ -. ( `' F ` x ) < K ) -> ( k = if ( ( `' F ` x ) < K , ( `' F ` x ) , ( ( `' F ` x ) - 1 ) ) -> ( k e. ( M ... N ) /\ x = ( F ` if ( k < K , k , ( k + 1 ) ) ) ) ) ) |
| 242 | 166 241 | pm2.61dan | |- ( ( ph /\ x e. ( M ... N ) ) -> ( k = if ( ( `' F ` x ) < K , ( `' F ` x ) , ( ( `' F ` x ) - 1 ) ) -> ( k e. ( M ... N ) /\ x = ( F ` if ( k < K , k , ( k + 1 ) ) ) ) ) ) |
| 243 | 242 | expimpd | |- ( ph -> ( ( x e. ( M ... N ) /\ k = if ( ( `' F ` x ) < K , ( `' F ` x ) , ( ( `' F ` x ) - 1 ) ) ) -> ( k e. ( M ... N ) /\ x = ( F ` if ( k < K , k , ( k + 1 ) ) ) ) ) ) |
| 244 | 125 243 | impbid | |- ( ph -> ( ( k e. ( M ... N ) /\ x = ( F ` if ( k < K , k , ( k + 1 ) ) ) ) <-> ( x e. ( M ... N ) /\ k = if ( ( `' F ` x ) < K , ( `' F ` x ) , ( ( `' F ` x ) - 1 ) ) ) ) ) |
| 245 | 8 10 14 244 | f1od | |- ( ph -> J : ( M ... N ) -1-1-onto-> ( M ... N ) ) |