This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Membership in the next upper set of integers. (Contributed by NM, 5-Oct-2005)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | eluzp1p1 | |- ( N e. ( ZZ>= ` M ) -> ( N + 1 ) e. ( ZZ>= ` ( M + 1 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | peano2z | |- ( M e. ZZ -> ( M + 1 ) e. ZZ ) |
|
| 2 | 1 | 3ad2ant1 | |- ( ( M e. ZZ /\ N e. ZZ /\ M <_ N ) -> ( M + 1 ) e. ZZ ) |
| 3 | peano2z | |- ( N e. ZZ -> ( N + 1 ) e. ZZ ) |
|
| 4 | 3 | 3ad2ant2 | |- ( ( M e. ZZ /\ N e. ZZ /\ M <_ N ) -> ( N + 1 ) e. ZZ ) |
| 5 | zre | |- ( M e. ZZ -> M e. RR ) |
|
| 6 | zre | |- ( N e. ZZ -> N e. RR ) |
|
| 7 | 1re | |- 1 e. RR |
|
| 8 | leadd1 | |- ( ( M e. RR /\ N e. RR /\ 1 e. RR ) -> ( M <_ N <-> ( M + 1 ) <_ ( N + 1 ) ) ) |
|
| 9 | 7 8 | mp3an3 | |- ( ( M e. RR /\ N e. RR ) -> ( M <_ N <-> ( M + 1 ) <_ ( N + 1 ) ) ) |
| 10 | 5 6 9 | syl2an | |- ( ( M e. ZZ /\ N e. ZZ ) -> ( M <_ N <-> ( M + 1 ) <_ ( N + 1 ) ) ) |
| 11 | 10 | biimp3a | |- ( ( M e. ZZ /\ N e. ZZ /\ M <_ N ) -> ( M + 1 ) <_ ( N + 1 ) ) |
| 12 | 2 4 11 | 3jca | |- ( ( M e. ZZ /\ N e. ZZ /\ M <_ N ) -> ( ( M + 1 ) e. ZZ /\ ( N + 1 ) e. ZZ /\ ( M + 1 ) <_ ( N + 1 ) ) ) |
| 13 | eluz2 | |- ( N e. ( ZZ>= ` M ) <-> ( M e. ZZ /\ N e. ZZ /\ M <_ N ) ) |
|
| 14 | eluz2 | |- ( ( N + 1 ) e. ( ZZ>= ` ( M + 1 ) ) <-> ( ( M + 1 ) e. ZZ /\ ( N + 1 ) e. ZZ /\ ( M + 1 ) <_ ( N + 1 ) ) ) |
|
| 15 | 12 13 14 | 3imtr4i | |- ( N e. ( ZZ>= ` M ) -> ( N + 1 ) e. ( ZZ>= ` ( M + 1 ) ) ) |